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ABSTRACT 

USING MACHINE LEARNING TO ADVANCE HIGH SCHOOL DROPOUT PREDICTION 

AND PREVENTION 

Anika Alam 

A. Brooks Bowden 

The importance of high school completion for jobs and postsecondary opportunities is well- 

documented. Combined with federal laws where high school graduation rate is a core 

performance indicator, school, districts, and states face pressure to actively monitor and assess 

high school completion. This study employs machine learning techniques to identify students at-

risk of exiting high school in either 9th or 10th grade. I find increased precision when applying 

resampling techniques to balance the training data, and that logistic regression performs similarly 

to more complex algorithms. When assessing the algorithmic fairness of models, I find most 

models tend to discriminate students with group membership in English proficiency, disability, 

and economic disadvantage attributes. Post-hoc analyses of the XGboost model reveal that a 

student’s age in 8th grade followed by middle grade absences, especially chronic absenteeism, is 

predictive of early exit. This study advances the current state of knowledge in the field by (1) 

generating synthetic data to improve model accuracy, (2) ensuring that model predictions prevent 

the deepening of structural inequities, and (3) exploring novel approaches to enhance the 

explainability associated with “black box” models, ultimately generating actionable insights for 

practitioners and stakeholders. 
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CHAPTER 1: INTRODUCTION  

This chapter introduces the context of the dissertation, beginning with the significance of high 

school completion. It then explores how federal laws influence high school completion, followed 

by a discussion of the emergence of early warning systems as a response to these influences. 

Finally, the chapter provides a rationale for the necessity of this research, specifically at the 

intersection of education data science and traditional education research. 

1.1 Importance of high school completion 

There are economic, social, and civic consequences of dropping out of high school. Compared to 

high school graduates, adults without a high school diploma earn substantially less in the labor 

market, experience poorer health, are more likely to engage in criminal behavior, are more likely 

to require public assistance, and are less likely to vote (Krueger et al., 2015; Belfield & Levin, 

2007; Dee, 2004). This is reflected in the labor market, where workers whose highest education 

level was high school completion typically earn $26,000 more per year than those who did not 

complete high school. (NCES, 2023). The monetary benefits translate to increased societal 

efficiency: if the number of students who withdraw from high school was cut in half, then the 

country can recover over 45 billion dollars that would have otherwise been spent on health care 

expenditures, lost tax revenues, and social services (Levin et al., 2007). Considering pecuniary 

and non-pecuniary returns of having a high school degree, on-time high school completion 

merits serious attention. 

In the 2021–22 school year, the national average 4-year high school graduation rate was 

87 percent. While this marks a gradual improvement over previous years, significant disparities 

persist among students from disadvantaged backgrounds. For example, in the same year, 

economically disadvantaged students had a graduation rate of just 81 percent. Other student 
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groups were well below the national average; English language learners, students with 

disabilities, and homeless students faced even steeper challenges, with completion rates of 72 

percent, 71 percent, and 68 percent, respectively (NCES, 2024). These gaps are not just numbers 

– they reflect systemic barriers that disproportionately affect students furthest from opportunity. 

The 2016 Current Population Survey (CPS) reveals concerning trends in high school 

dropout rates across different income groups in the United States. In 2016, the dropout rate for 

16- to 24-year-olds from families in the highest income quartile was just 3.9 percent, while those 

from the middle-high income quartile had a slightly lower dropout rate of 3.6 percent. In 

contrast, students from families in the lowest income quartile faced a dropout rate of 7.2 percent, 

more than double that of their higher-income peers. Moreover, the number of 16- to 24-year-olds 

who did not complete high school or were not enrolled in high school was 3.7 times higher in 

low-income families compared to high-income families (McFarland et al., 2018). This stark 

contrast underscores the significant disparities in educational access.  

These disparities not only limit future economic opportunities for these young people but 

also contribute to perpetuating cycles of poverty. Without a high school diploma, individuals are 

less likely to secure stable, well-paying jobs, which in turn exacerbates economic inequality and 

hinders social mobility. A high school diploma plays a crucial role in enhancing the productivity 

of the United States in equipping individuals with workforce readiness, economic growth, social 

stability, and reduced inequality. 

1.2 Policy landscape 

Federal education laws in the last two decades have emphasized the importance of high school 

completion. The No Child Left Behind (NCLB) Act, passed in 2002, mandated that states 

develop and enforce accountability measures to ensure student learning across all public K-12 
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schools in the United States. As part of the law's comprehensive framework, NCLB required 

states to administer standardized tests in mathematics and reading in designated grade levels, set 

rigorous academic standards, and publish annual report cards that detailed student performance 

(U.S. Department of Education, n.d.). These report cards were designed to provide transparency 

and ensure that schools were meeting established educational goals. In exchange for receiving 

federal Title I funding, states were required to oversee the implementation of accountability 

mechanisms, including sanctions for schools that failed to meet Adequate Yearly Progress 

(AYP). AYP served as a measure of how well students were performing relative to the state’s 

academic standards, with an emphasis on ensuring that all students, regardless of background, 

achieved proficiency in core subjects like math and reading. Progress on these standards were 

tested annually for all students in third through eighth grade and in one grade in high school. 

Annual test scores were compared to prior years to determine progress on state-determined AYP 

standards. Schools that did not meet AYP faced escalating consequences, such as developing and 

implementing two-year improvement plans, additional tutoring services, offering school choice 

options, or even restructuring efforts. 

One significant aspect of NCLB was its focus on the graduation rates of high school 

students. The law required states to report both aggregate graduation rates and disaggregated 

graduation rates for specific student subgroups, such as racial and ethnic minorities, low-income 

students, and those with disabilities. Schools that failed to report graduation rates for even one 

year could be deemed to have missed AYP, triggering sanctions. This provision underscored 

NCLB’s commitment to addressing achievement gaps and holding schools accountable for the 

success of all students, particularly those in historically underperforming subgroups. Moreover, 

recent evidence suggests that federal accountability has substantially increased high school 
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completion rates and human capital (Harris, 2020; Harris et al., 2023). This law places incentive 

and pressure for school systems to actively monitor, assess, and improve high school completion. 

Critics of NCLB argue that the law’s provisions disincentivize high school completion 

and further exacerbate push-out rates for marginalized students. Prior studies have linked the 

effects of grade retention during NCLB era to higher student exit (or dropout) rates (Darling 

Hammond, 2006; Rumberger, 2008). For better or for worse, federal accountability in K-12 

education is undoubtedly complex and has shaped student learning. 

The successor to NCLB, the 2015 Every Student Succeeds Act (ESSA), continues to 

emphasize high school graduation rate as a core academic performance indicator. ESSA requires 

that “states and districts are required to intervene in high schools with on-time graduation rates 

lower than 67 percent” (U.S. Department of Education, 2017). Consequently, states must identify 

and label high schools for comprehensive support and improvement (CSI) that fail to meet the 67 

percent threshold.  

Regardless of the impact these laws had on student achievement, both NCLB and ESSA 

have significantly contributed to the expansion of administrative data in the K-12 education 

system. The emphasis of standardized testing, reporting, and data collection led to a large 

increase in the volume of student-level educational information collected by local and state 

agencies (Figlio & Loeb, 2011). The extensive administrative data collected on students include 

demographics, attendance, discipline, test scores, and other performance indicators. This data are 

often systematically aggregated to create longitudinal data systems which collect, store, and 

analyze educational data over time across various stages of a student’s academic journey. By 

linking multiple data points across years, longitudinal systems enable the identification of early 
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signs of disengagement, allowing for more targeted interventions aimed at improving student 

outcomes (Allensworth & Easton, 2007; U.S. Department of Education, 2012).  

The U.S. Department of Education recognizes the potential to inform data-driven 

decision-making and strongly encourages the development and use of statewide longitudinal data 

systems (SLDS). Since 2005, the Education Technical Assistance Act has awarded competitive 

grants to support the establishment and expansion of SLDS. Every state thus far has received at 

least one such grant. In 2023, 25 states and the District of Columbia were awarded SLDS grants. 

This underscores the growing importance and relevance of leveraging administrative data to 

improve student outcomes. 

1.3 Emergence of Early Warning Systems (EWS) 

Early warning systems (EWS) are prediction tools that monitor and anticipate which individuals 

and communities are at risk of an adverse outcome. EWS are used in various public sectors. For 

instance, EWS have been used by environmental agencies to identify communities at risk of 

natural disasters (CDC, 2024), in healthcare to predict maternal mortality by monitoring risk 

factors such as blood pressure, age, and access to prenatal care (NIH, 2019), and in public health 

to track the spread of infectious diseases (Wu, 2016). In education, there has been a growth of 

EWS where schools, districts, or states aim to identify students at risk of missing key educational 

milestones. These include dropping out of high school, experiencing chronic absenteeism, or 

being held back a grade (AIR, 2010; Bowers et al., 2013).  

Unlike SLDS that examine broader trends over time, EWS are predictive tools that 

identify individuals or groups who may benefit from immediate attention. Most EWS 

applications in K-12 focus on identifying students at risk of dropping out of school. These 
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applications utilize student educational records (e.g. administrative data that are often linked in 

SLDS) as risk indicators or predictors to predict which students may need additional support.  

Dropout prediction is crucial for early identification of at-risk students because it 

provides schools and districts with evidence to inform and implement targeted supports and 

services. The earlier schools can identify at-risk students, the earlier they can provide targeted 

interventions such as double-dose algebra (Nomi and Raudenbush, 2016; Cortes et al., 2016) or 

credit recovery programs that let students earn credits for courses they previously failed 

(Heinrich et al., 2019; Rickles et al., 2018; Viano et al., 2023). A national survey found at least 8 

state education agencies have either developed or are currently building statewide EWS and over 

20 states are actively supporting the development of EWS in local education agencies (Feathers, 

2023). 

1.4 Recent EWS Applications  

There has been a surge of artificial intelligence (AI) methods used in education settings, 

particularly in the development of EWS. The allure of AI, driven by its ability to analyze vast 

amounts of administrative data and provide tailored predictions, has fueled its integration into 

EWS settings. In EWS settings, there is an increased use of machine learning methods – a subset 

of AI methods that focus on building prediction models to flag individuals at risk of an adverse 

outcome. However, recent applications in the K-12 sector revealed deep flaws with these 

systems, specifically with regard to equity and interpretability.  

The first challenge is that EWS may erroneously flag students as at-risk, especially for 

those from marginalized backgrounds. A notable example is Wisconsin's statewide EWS, which 

has been under significant scrutiny. A recent audit revealed that students from racial subgroups 

were disproportionately mislabeled at higher rates than their peers, where over 75 percent of 
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Hispanic and Black students were misclassified as high-risk. Furthermore, the audit found that 

the system perpetuated bias in how teachers perceived students of color (Feathers, 2023). 

Wisconsin’s failure to provide equitable and accurate predictions underscores a critical 

challenge: the potential for EWS to exacerbate existing structural disparities in educational 

outcomes. 

The second major challenge of EWS arises from interpretability of findings generated by 

models that use machine learning approaches. Models that use such statistical approaches are  

often coined “black box” models because their decision-making processes are not easily 

understandable or explainable to users, policymakers, or even the developers themselves. The 

lack of interpretability makes it difficult to trust and validate the model's predictions, as 

stakeholders may struggle to understand why certain students are flagged as at risk or why others 

are not (Prinsloo, 2020; Nussberger et al., 2022; Purcell, 2024). This opacity also complicates 

efforts to ensure fairness and avoid reinforcing biases, as users may be unable to assess whether 

the statistical model is inadvertently favoring or disadvantaging certain subgroups. 

As a result, the effective use of predictive modeling approaches from AI requires not only 

strong predictive accuracy but also enhanced transparency, explainability, and interpretability to 

foster trust and ensure the system’s outcomes are both valid and equitable. This is a critical 

juncture for schools and systems that are either looking to develop an EWS or update their 

existing system. An EWS has the potential to empower schools and systems with the information 

needed to take meaningful action. At the same time, there is a need to assess the fairness of 

prediction models to ensure that model findings are not perpetuating bias and that model findings 

can be interpreted by a non-technical audience. 
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1.5 At a Glance  

This dissertation employs machine learning algorithms to forecast students at risk of dropping 

out of high school. I draw data from North Carolina’s statewide longitudinal data system, 

NCERDC, to develop a prediction model that uses student records from middle grades (grades 6 

through 8) as predictors to flag students at risk of dropping out in 9th or 10th grade.1 The 

dissertation investigates three key research objectives: (1) compare the predictive accuracy of 

supervised learning algorithms to traditional methods (i.e., logistic regression) in predicting early 

high school withdrawal, and examining if addressing imbalanced training data improves model 

accuracy; (2) conduct a fairness analysis to ensure that models provide equitable predictions 

across sensitive student attributes; and (3) interpret model findings to understand the underlying 

factors contributing to high school withdrawal.  

I include predictors that capture school engagement through attendance (absence rate and 

chronic absence), behavior (disciplinary infractions), and coursework (math and reading 

proficiency). This follows literature recommendations of using attendance, behavior, and course 

performance, also known as ABC indicators (Balfanz et al., 2007; Mac Iver, 2010; Allensworth 

& Clark, 2019). 

To answer the first research question I compare the prediction accuracy of models that 

employ the following algorithms: logistic regression, lasso regression, ridge regression, random 

forests, and extreme gradient boosting (XGBoost). I use these algorithms to train models that 

rely on imbalanced data, or data where the minority class – number of students who exited early 

– are largely outnumbered by the majority class, or students who did not exit early. I later 

 
1 In North Carolina, the legal age for exiting school is 16, which generally aligns with a student's 11 th grade year. 
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address class imbalance using two resampling techniques: oversampling and undersampling the 

training data. I apply the Synthetic Minority Oversampling Technique (SMOTE) to oversample 

instances of the minority class, generating synthetic (i.e., artificial) observations to enhance its 

representation in the dataset (Chawla et al., 2019). Alternatively, I employ undersampling by 

reducing the number of observations in the majority class to match the size of the minority class. 

Finally, I evaluate whether training models on either type of resampled data leads to improved 

prediction accuracy. The subsequent research questions rely on the fifteen models built in the 

first question.  

The second research question assesses algorithmic fairness among the fifteen models 

using two metrics: the Absolute Between-ROC Area (ABROCA) metric developed by Gardner 

et al. (2019) and the equalized odds metric developed by Hardt et al. (2016). I examine sensitive 

attributes by comparing model performance of student subgroups based on gender, 

race/ethnicity, disability status, financial hardship, and English language proficiency.  

The final question interprets a subset of models to gain a deeper understanding of the 

factors associated with early withdrawal. I assess the consistency of key predictors identified 

across the models and extract relevant features using methods appropriate for each algorithm. 

For the regression models (logistic regression, lasso regression, and regression), this involves 

analyzing non-zero coefficients that exceed a predefined threshold. For ensemble methods, I 

examine feature importance plots and utilize SHAP (SHapley Additive exPlanations) values to 

identify significant predictors of early exit. I conclude the analysis with a discussion of tradeoffs 

associated with the use of complex “black box” models and how to make findings interpretable 

and actionable for practitioners and stakeholders. 
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1.6 Study contributions 

This dissertation is a conceptual replication of Knowles (2015) and extends Knowles’ 

work by predicting high school exit in a different setting and context. This study advances the 

field of dropout prediction in four key ways. First, this study is among the few known dropout 

prediction studies that examine the timing of high school exit to identify an optimal period for 

delivering targeted interventions and support services. By focusing on the temporal aspects of 

student withdrawal, this research seeks to inform the strategic allocation of resources and 

enhance the effectiveness of early intervention efforts. 

Second, this study is the only known one to date that evaluates algorithmic fairness in a 

U.S. context. While there is growing recognition of the potential for algorithmic bias in models 

trained on historically biased data, most existing efforts to detect and address such biases have 

taken place in international education settings. This highlights a gap in the application of 

equitable model predictions within the U.S. educational landscape, where these advancements in 

data science have yet to be fully realized. Thus, this study contributes to filling a critical gap by 

introducing how algorithmic fairness can be manifested in the U.S., offering insights that could 

inform more equitable and transparent decision-making processes in educational systems.  

The third contribution of this study is that it tackles class imbalance – an issue often 

overlooked challenge in U.S. settings, despite its widespread prevalence when predicting adverse 

outcomes. While class imbalance is a well-recognized issue in many domains, including 

healthcare and criminal justice, it has received relatively little attention in educational research, 

particularly in the context of dropout prediction models. By addressing this gap, this study 

highlights the importance of ensuring balanced representation in predictive models, ultimately 

contributing to more accurate decision-making in educational policy and practice. 
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The fourth contribution of this study is its improvement of model generalizability, or the 

likelihood that the model achieves high predictive accuracy across diverse populations, 

timeframes, and settings. This study enhances generalizability by adopting a novel 

methodological approach: it uses data from one student group to establish associations between 

middle school engagement and high school exit (training data) and then evaluates the model’s 

predictive accuracy on a distinct, separate student population (test data). This approach differs 

from the conventional method of training models by randomly partitioning data from a single 

population into training and test subsets. By leveraging a cross-population validation strategy, 

this study mitigates the risk of overfitting to a specific cohort, ensuring that the model remains 

robust and applicable across varying demographic and contextual settings. This approach 

strengthens the model’s external validity, making it more useful for real-world applications in 

diverse educational settings. 

In summary, this dissertation seeks to bridge the gap between data science and education 

research – areas that have historically operated in relative isolation. While the field of data 

science is actively advancing efforts to enhance data literacy, governance practices, and the 

ethical use of predictive analytics, these advancements have not yet been widely adopted in 

educational settings, especially in the U.S. This disconnect has led to missed opportunities for 

leveraging the full potential of data-driven insights to inform educational policy and practice. By 

addressing this gap, the dissertation aims to foster a more integrated approach, encouraging the 

incorporation of best practices from data science to promote more effective, equitable, and 

transparent decision-making in education. 
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1.7 Dissertation overview 

The goal of this chapter is to establish the context for why high school completion is a critical 

issue, outline policy and data driven efforts aimed at improving graduation rates, and discuss the 

challenges associated with these efforts. It also explores the barriers to predict student 

disengagement such as regards to equity and ease of interpretation by stakeholders. The chapter 

concludes with a brief overview of the research questions, methods, and the contribution of this 

work. The remainder of this dissertation is organized as follows: the second chapter is a literature 

review that situates this work in the intersection of data science and education, establishes the 

theoretical concepts and framework that underpin this work, and reviews the methodologies used 

in prior studies. The third chapter covers the research design and provides a detailed overview of 

the data, sample, and methods employed to address the proposed research questions. The fourth 

chapter presents the results for the study. The fifth and final chapter is a discussion that discusses 

the study’s limitations, implications, and suggestions for future research.  
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CHAPTER 2: LITERATURE REVIEW 

Chapter Introduction 

The goal of this literature review is to offer a comprehensive and critical overview of existing 

research on K-12 dropout prediction. This chapter serves several key functions. First, I review 

the methodologies employed in previous studies and discuss their limitations, highlighting areas 

for future research to address or improve. Second, I review the theoretical concepts and 

frameworks that form the foundation of my study. Third, I position my research at the 

intersection of education and data science, synthesizing relevant scholarship to show how my 

work extends, fills gaps in, or challenges the current body of knowledge. This includes a 

discussion of key issues, debates, and trends in the field. Finally, I argue for the significance of 

my dissertation and its potential contributions to advancing the field. This chapter situates the 

relevant background knowledge needed to understand my decision to explore the following 

research questions: 

1: How does the prediction accuracy of supervised learning algorithms to predict early 

exit from high school compare to that of traditional models (i.e., logistic regression)? 

Additionally, how does model performance vary when resampling techniques are used to 

address class imbalance? 

2: To what extent does each model provide fair predictions across sensitive student 

attributes such as gender, race/ethnicity, disability status, financial hardship, and English 

proficiency? 

3: What are the most salient predictors of students who exited high school in 9th or 10th 

grade? 

 

This chapter is organized as follows. First, I summarize existing research on the 

relationship between student disengagement and high school dropout rates. I then survey the 

effectiveness of dropout prevention efforts, with a focus on the application of early warning 

systems. Following this, I describe the theory and standardized methodology for constructing 

predictive models in data science. Later, I explore the use of machine learning in education, 
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reviewing two common machine learning techniques in dropout prediction – regression models 

and tree-based models – and the trade-offs involved in using these methods over traditional 

prediction approaches. Next, I discuss the challenges of applying machine learning to dropout 

prediction, including issues related to model accuracy and interpretability, generalizability, class 

imbalance, and potential student discrimination in model outcomes. I also delve into the debate 

surrounding the inclusion of demographic information in predictive modeling, presenting key 

arguments from both perspectives. The subsequent section reviews recent advancements in 

measuring student discrimination in prediction models, often known as algorithmic fairness. I 

highlight four methods for assessing algorithmic fairness fairness: group differences in 

performance, the Absolute Between-ROC Area (ABROCA) metric, equalized odds, and 

demographic parity, discussing the applicability of each in different contexts. Finally, I conclude 

the chapter by outlining criteria for developing more consistent, reliable, and coordinated early 

warning systems and justifying the need for my work within the broader field of dropout 

prediction. 

2.1 Factors associated with high school exit  

This subsection synthesizes literature that uncovers early warning signs of dropping out and 

highlights research gaps that remain in this area of research. 

2.1.1 Attendance, behavior, and coursework (“ABC”) predictors 

A student’s decision to withdraw from high school can be connected to factors across four 

domains: community, school, family, and individual (Hammond et al., 2007; Rumberger & Lin, 

2008; Shargel, 2013). Empirical research that aims to understand the causes and consequences of 

dropping out of high school are grounded in two theories: individual perspective and institutional 

perspective. The individual perspective emphasizes that the decision to drop out depends on 
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individual decision made by the student and is shaped by the individual’s school engagement, 

attitudes, experiences and beliefs. In contrast, the institutional perspective argues that contextual, 

external factors drive students to permanently discontinue their schooling journey, such as 

family, school, and community (Rumberger, 2011; Balfanz, 2013; Doll et al., 2013).  

This dissertation focuses on the theoretical construct of student engagement individual 

perspective and specifically, the relationship between student-education engagement and 

dropping out of high school. Student-education engagement refers to a student’s K-12 schooling 

experience that encompasses behavioral, cognitive, and emotional engagement (Gleason & 

Dynarski, 2002; Fredricks et al., 2004). Recent literature narrows the scope of student education 

engagement with a base set of categories: attendance, behavior, and course performance, also 

known as ABC indicators (Frazelle Nagel, 2015; Allensworth Easton, 2007; Mac Iver, 2010; 

Balfanz et al., 2007; Allensworth & Clark, 2019).  

Prior research has established that early disengagement from school increases the 

likelihood of dropping out (Balfanz & Bryne 2018; Rumberger, 2020; Casillas et al. 2012). Table 

1 presents an overview of studies that have examined ABC engagement as a predictor for early 

exit. These studies share similar a similar conclusion that grades are associated with on-time 

grade promotion and high school graduation (Jackson, 2018). Dropout flags focusing on GPA 

were some of the most accurate dropout flags across the literature (Bowers et al., 2013) and 

failing grades were strongly predictive of dropping out (Bowers & Sprott, 2012a; Bowers 2010b; 

Balfanz et al., 2007; Gubbels et al. 2019). This knowledge is ubiquitous in K-12 settings; schools 

and school systems often rely on grades to identify students in need of additional support and 

services.  
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Most studies examining risk factors tend to focus primarily on course performance, or 

“C” indicators, such as student grades, test scores, and the types of courses taken. However, 

research that incorporates all three categories of ABC indicators (attendance, behavior, and 

course performance) in the same prediction model is relatively rare and tends to be concentrated 

in U.S. K-12 settings (Knowles, 2015; Sorenson, 2019; Sansone, 2019). This is unsurprising, 

given the limited availability of longitudinal education data systems that integrate such 

comprehensive information, particularly in post-secondary settings or in education systems 

outside the United States.  

Table 1: Literature summary of ABC predictors 

Type of student 

disengagement 

Factors strongly predictive of high school exit 

Attendance - Moderate absences in 9th grade (Allensworth & Easton, 2007) 

- Chronic absenteeism in middle grades (Allensworth et al., 2014; 

Seeskin et al., 2022) 

- Middle school attendance (Kieffer et al., 2011) 

- 9th grade chronic absenteeism (Mac Iver & Messel, 2013) 

Behavior - Out-of-school suspensions (Balfanz et al., 2014) 

Coursework - 4th grade math and reading scores (Kieffer et al., 2011) 

- 9th grade course failure (Neild & Balfanz, 2006; Mac Iver & 

Messel, 2013) 

- 9th grade GPA (Allensworth & Easton, 2007; Bowers & Sprott, 

2012b; Allensworth, 2013; Easton et al., 2017) 

- Teacher assigned grades in 9th and 10th grade (Bowers & Sprott, 

2012b)  

 

2.1.2 Gaps in student engagement literature 

Although considerable attention has been dedicated to understanding and supporting at-risk 

students, there are several dimensions of student engagement that are not sufficiently explored. 

Specifically, areas such as chronic absenteeism, the age of students, rurality, and the timing of 

student exit from educational systems warrant further investigation.  
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Recent empirical work has demonstrated a stronger association between poor school 

attendance and the decision to drop out of school. Specifically, students who are chronically 

absent – typically defined as students who are absent at least 10 percent of the time – experience 

lower academic achievement, are more likely to repeat a grade, are more likely to face 

disciplinary infractions, and are more likely to drop out (Balfanz & Byrnes, 2018; Gottfried, 

2017; Humm et al., 2018). Chronic absenteeism in schools has risen sharply in the years 

following the COVID-19 pandemic, revealing a significant shift in student engagement and 

attendance patterns. In the 2018-2019 school year, approximately 15 percent of K-12 students 

across the U.S. were classified as chronically absent. However, by the 2021-2022 school year, 

that figure had more than doubled, with 30 percent of students falling into this category (White 

House, 2023). In response to this growing challenge, schools and districts have developed early 

warning systems that identify students at risk of being chronically absent (Wu & Weiland, 2024). 

Despite these growing concerns, dropout prediction studies to date have not prioritized chronic 

absenteeism as a predecessor for dropping out of high school. 

Despite the present education policies that impose age restrictions for school entry, there 

are few known prediction models that examine age as a predictor for early exit. There is previous 

economic work that exploited age at school entry to examine elementary and middle school 

engagement. Scholars find that on average, K-12 students whose birth date is just before the 

school entry cutoff exhibit lower academic performance (Dee and Sievertsen, 2018; Dobkin and 

Ferreira, 2010; Oliveira and Duque, 2019; McEwan and Shapiro, 2008; Elder and Lubotsky, 

2009; Crawford et al., 2014). Among the body of studies that predict high school dropout, only 

Sorensen (2019) includes a demographic factor if a student is “old-for-grade” but did not 

describe the parameters describing the age indicator.  
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Rurality merits important consideration in education research. Studies suggest that there 

is a negative association between geographic isolation and academic achievement (Drescher and 

Torrance, 2022; Echazarra and Radinger, 2019; Faggian et al., 2017). Although population 

density is frequently used when disaggregating high school graduation rates, most studies omit 

rurality as a predictor for high school dropout.  

Although much research has focused on the general effects of dropping out, there is 

limited exploration into whether early dropout – during 9th or 10th grade – has more profound 

long-term effects on academic, social, and economic outcomes compared to dropping out in the 

later years like 11th or 12th grade. The consequences of early dropout may be more severe, given 

the formative nature of the earlier high school years in terms of academic foundation, social 

development, and future career prospects. However, the absence of a clear, evidence-based 

understanding of dropout timing hampers the ability to design targeted interventions and policies 

that could more effectively address the needs of at-risk students at various stages of their high 

school education. 

In summary, these factors, while integral to the broader landscape of academic 

achievement, have yet to be examined in dropout prediction studies. The inclusion of these 

aspects of student engagement in prediction models could provide deeper insights into the 

complex dynamics that shape the decisions of at-risk students. 

2.2 Dropout prediction and prevention efforts 

2.2.1 Efficacy of early warning systems  

Despite efforts to predict student disengagement using historical data, not much is known 

about which indicators are the most predictive and how to translate it to actionable evidence that 
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schools and school systems can utilize (Bowers, 2021). This subsection highlights research 

efforts to develop early warning systems and the effectiveness of such applications. 

The Consortium on Chicago School Research (CCSR) has spearheaded the movement of 

school districts in developing early warning systems. Based on their research in the Chicago 

Public Schools district, CCSR developed a freshman on-track indicator that flags students as “off 

track” based on course credits and course failures in 9th grade. The on-track indicator has proven 

effective in identifying at-risk students in Chicago Public Schools (Allensworth & Easton, 2007; 

Allensworth, 2013). It has since been adopted by several other districts, which have reported 

similar positive outcomes. An overview of these applications is presented in Table 2. 

 CCSR has since developed an additional on-track indicator for students in grades 3 

through 8. This indicator, called the 3-8 OnTrack metric, is designed to help elementary and 

middle schools better prepare students for high school. In 2019, Chicago Public Schools 

incorporated this indicator to account for 10 percent elementary principals’ evaluations. A recent 

study found that the 3-8 OnTrack metric was successful in identifying at-risk students, with low 

GPA in middle grades to be the most predictive of dropping out (Seeskin et al., 2022). This 

example highlights the growing interest of districts in understanding and preventing student 

disengagement.  

Table 2: Applications of early warning systems   

Study Setting Approach Findings 

Allensworth & 

Easton (2007) 

 

Allensworth 

(2013) 

Chicago Public 

Schools 

Freshman on-track 

indicator 

- Indicators were more 

predictive of HSG than 

students’ background 

characteristics or middle 

school test scores 

Norbury et al. 

(2012) 

2 urban Midwest 

districts 

Freshman on-track 

indicator 

- On-track indicator was 

significantly predictive of 

HSG 

Crofton & Neild 

(2018) 

School District of 

Philadelphia 

Freshman on-track 

indicator 

- Failing a course or missing a 

required course 
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- Female students were more 

often on track than male 

students 

Seeskin et al. 

(2022) 

Chicago Public 

Schools 

Grades 3-8 OnTrack 

metric 

- Strong interaction between 

being chronically absent & 

maintaining a 3.0 GPA  

Perdomo et al. 

(2023) 

Wisconsin Dropout early warning 

system (DEWS) 

- Prediction system accurately 

sorted students by dropout risk 

- Low implementation in 

districts 

- System led to little or no 

increases in HSG 

Notes: HSG is short for high school graduation; GPA is short for grade point average. 

 

A study by Canbolat (2024) stands out as one of the few non-experimental evaluations of 

an early warning system. In its examination of a system that flags students at risk of being 

chronically absent, Canbolat found that early identification reduced chronic absenteeism among 

students who did not receive free- or reduced-price lunch (FRPL) but found no effects among 

FRPL students. Moreover, a recent evaluation of the Wisconsin statewide early warning system 

found that early identification, at best, improved high school graduation by single digits 

(Perdomo et al., 2023). There are two studies to date that have randomly assigned early warning 

systems to a comparison group. Both studies found the early warning systems reduced chronic 

absenteeism but had no effects on student suspensions, low GPA, and course credits earned 

(Faria et al., 2017; Mac Iver et al., 2019). Despite the expansion of studies that evaluate the 

efficacy of early warning systems and the role of CCSR in providing frameworks for districts to 

use, further research is essential to fully understand the long-term effectiveness of these systems. 

Additionally, continued exploration is needed to identify potential improvements as these 

systems evolve in response to the challenges presented by the pandemic. 
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2.2.2 Efforts to reengage at-risk students  

Aside from the development of early warning systems and federal accountability laws, schools 

and school systems have made many efforts to improve high school completion. Common 

reengagement strategies that are typically provided at the high school level include raising the 

compulsory school age, providing double-dose algebra, and offering credit recovery programs. 

Table 3 provides a summary of these approaches and their respective ties to empirical research. 

Table 3: High school reengagement efforts 

Reengagement 

strategy 

Theory of Change Empirical Evidence 

Raising the 

compulsory 

school age 

Increases the length of  

education journeys for 

students who would have 

otherwise discontinued 

their schooling 

- Increases educational attainment 

(Oreopoulos, 2009; Cabus & Witte, 2011) 

- Increases earnings earnings (Angrist & 

Krueger, 1991) 

- No changes in high school graduation 

rates (Landis et al., 2010; Mackey et al. 

2013; Raimondi & Vergolini, 2019). 

Double-dose 

algebra 

Provides struggling 

students with twice the 

amount of algebra 

instruction to build a strong 

foundation in algebra 

- No short-term changes in 9th grade 

algebra failure rates (Nomi & Allensworth, 

2013) 

- Substantial and positive long-term 

impacts of double-dose algebra on high 

school completion rates, college entrance 

exam scores, and college enrollment rates 

(Cortes & Goodman, 2014; Cortes et al., 

2013) 

Credit recovery 

programs 

Help high school students 

retake courses and earn 

credits toward graduation 

- Increased the likelihood of graduating 

high school, especially for economically 

disadvantaged and Hispanic students 

(Viano & Henry, 2024; Nomi et al., 2021)  

- No effects of online credit recovery 

programs in the short term (Heppen et al., 

2017; Rickles et al., 2018) 

 

It is crucial to emphasize that efforts to reengage students are generally provided after at-

risk students have been identified. However, proactive measures, such as the development of 



 

22 

predictive models and early warning systems, are essential predecessors to forecast which 

students are at risk of dropping out. 

2.2.3 Why develop an early warning system  

An early warning system is a structured approach designed to identify individuals at risk of 

negative outcomes. In K-12 settings, early warning systems provide evidence to enable timely, 

targeted interventions to support at-risk students. This proactive approach not only prevents 

dropout but also optimizes resource efficiency.  

When students drop out, schools and districts lose funding that is tied to student 

enrollment. There are also the long-term societal costs associated with lower education levels, 

including reduced workforce productivity and higher social service needs. By investing in early 

warning systems, schools can intervene before students disengage, thereby reducing the risk of 

dropout and ensuring that resources are allocated more efficiently. In the long run, preventing 

dropouts through early identification is far less expensive than the broader financial and societal 

costs that arise when students discontinue schooling and do not earn a high school diploma.  

2.3 Building a Prediction Model 

The first two sections of this chapter focused on the non-technical dimensions of student 

disengagement by discussing what is known about students who drop out of high school, and 

what efforts schools and districts have made to proactively support these at-risk students. The 

remainder of this chapter largely focuses on methodological literature and technical approaches 

to develop, improve, and evaluate the robustness of early warning systems.  

This section introduces the first technical aspect of developing an early warning system: 

the process of building a prediction model. This section covers four essential steps that are 

critical to building a robust dropout prediction model: applying a statistical approach to estimate 
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the probability that a student will drop out of high school, which is typically achieved through a 

logistic regression; identifying a threshold or cutoff value that sets the minimum predicted 

probability needed to classify a student as being at risk for "early exit"; understanding techniques 

to improve model generalizability using cross-validation; and lastly, discussing appropriate 

metrics to evaluate model performance. These steps collectively form the foundation for 

developing a predictive model that can provide actionable insights for early intervention and 

dropout prevention. 

2.3.1 Logistic regression 

Logistic regression is a statistical method commonly used for classification tasks, where the goal 

is to predict the probability of a particular event occurring. A specific type of logistic regression, 

a binary logistic regression, focuses on situations where the dependent variable is binary with 

two possible outcomes: the occurrence or non-occurrence of the event. When the dependent 

variable takes the values of either '0' or '1', the logistic regression estimates the probability of 

each observation belonging to one of the two categories, with predicted probability values that 

range from 0 to 1.  

Logistic regression model relies on the following assumptions: including independent 

observations, no perfect multicollinearity and linearity. 

1. Linearity. The relationship between each continuous predictor variable and the log odds 

of the dependent variable should be linear. 

2. There are no outliers, or extreme observations, in the data. 

3. No perfect multicollinearity, or when independent predictors are highly correlated with 

each other. 

 

To satisfy the linearity assumption, the logistic regression output values are transformed from 

a probability to a logit function, where the outcome is in a log odds unit. For the probability that 
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an event will occur, p, the probability that it will not occur is (1-p). Taking the log odds of the 

ratio, 𝐿𝑜𝑔 (
𝑝

(1−𝑝)
), transforms the outcome distribution from [0,1] to a full range of numbers, (-

∞, ∞) (Angrist & Pischke, 2014; Wooldridge, 2019). 

This approach is popular in exploratory data analysis (often called descriptive analysis) 

and remains the standard approach for predicting binary outcomes in education research. It is 

important to note that logistic regression is one of the many methods that can be used to build a 

prediction model. A logistic regression typically encompasses the formal specification:  

𝐿𝑜𝑔 (
𝑝

(1 − 𝑝)
)  =  𝛽0 + 𝛽1𝛽𝑋1  + 𝛽2𝑋2+ . . .  +𝛽𝑘𝑋𝑘 

where there are K predictors with βk corresponding regression coefficients that are also reported 

as log odds. The outcome is the expected log of the odds that the student will exit early. To better 

understand log odds, consider an example of a logistic regression with one predictor, 6th grade 

standardized math score. A regression coefficient of -2.66 can be interpreted as a one standard 

deviation increase in math score decreases the odds that a student will exit early by a factor of 

2.66.  

To determine if a coefficient βk is statistically different from zero, researchers rely on 

Wald (z) confidence intervals of and z tests. Similar to F-tests in other regression frameworks, 

one can conduct the likelihood ratio test to see if a collective set of predictors are not needed.  

There is flexibility in determining how many predictors or features the model should 

have. This can follow a forward selection method where the initial model is parsimonious (with 

few or no predictors) and later models gradually include more predictors. Conversely, backward 

selection inputs the largest pool of predictors in the initial model and excludes predictors in later 

models (James et al., 2021; Hastie et al., 2009). 
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Regression model fit is often evaluated on its sum of squared errors, also known as the 

residual sum of squares (RSS) (Kuhn & Johnson, 2013). RSS measures the variance in the 

residuals (error term). RSS is represented by the formulation: 

𝑅𝑆𝑆 =  ∑(𝑌𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)2 

𝑛

𝑖=1

 

where observation i’s difference between observed values and estimated values across p 

predictors are squared and summed across all (n) observations. The smaller the RSS, the better 

model fit. Although a model with an RSS of zero indicates that the predictors perfectly predict 

the outcome, it can signal two potential issues: overfitting on data and multicollinearity, or 

correlation among predictors (Fahrmeir et al. 2022; Kuhn & Johnson, 2013).  In cases where the 

RSS is close to zero, researchers rely on approaches that either reduce the number of model 

predictors or adjust the RSS function to prevent overfitting. Alternative approaches to logistic 

regression will be extensively discussed in 2.4. 

2.3.2 Identifying a decision threshold 

This subsection focuses on a tuning parameter known as the decision threshold (i.e., cut-off 

score), which determines how the model assigns outcomes to each observation. While the 

primary goal of a prediction model is to estimate the likelihood of an event occurring, it is rare 

for the model to produce predicted probabilities that are exactly 0 or 1.0. In the context of 

prediction models, the decision threshold is the optimal cutoff point that differentiates students at 

risk of early exit from those who are not. Students with predicted probabilities above this 

threshold would be classified as "exited early," while those with probabilities below it would be 

categorized as "did not exit early."  
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A receiver operator characteristic (ROC) curve is regarded as the gold standard for 

measuring the performance of a probability threshold. Originating in signal detection theory, a 

ROC curve visualizes the tradeoff between the true positive rate (TPR) – the proportion of 

instances where the model correctly predicts early exit – and false positive rate (FPR) – the 

proportion of instances where the model incorrectly predicts early exit. This is done across all 

classification thresholds (Swets, 1988; Swets et al., 2000; Streiner & Cairney, 2007). Figure 1 

presents a hypothetical ROC curve that provides curves for two models, Model 1 and Model 

2.The default probability threshold (if not specified in the model) is 0.5; selecting a more relaxed 

cutoff beyond 0.5 would result in a higher true positive rate but comes with a penalty of a higher 

false positive rate.  

Figure 1: Hypothetical ROC curves 

 

As seen in Figure 1, the default probability threshold of 0.5 is represented with a diagonal 

line. This line indicates that the model is essentially guessing its predictions and holds no 

predictive power. The most desirable performance is when the model exhibits a high TPR and 

low FPR, which is typically achieved when the curve is to the top left corner. In comparison to 

Model 2, Model 1 demonstrates a steeper curve at all points, suggesting that Model 1 
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consistently yields a higher number of true positives across the full range of false positive 

thresholds. This indicates that Model 1 is more effective in correctly identifying positive 

instances, making it a stronger model in terms of its model performance. 

The area under the ROC curve, called the area under curve (AUC), measures a model's 

ability to discriminate between positive and negative instances across all classification 

thresholds. An AUC score of 0.5 indicates that the model is no better than random guessing, 

while an AUC of 1.0 indicates perfect classification. The AUC can be interpreted as the 

probability that the model will correctly assign a higher score to a randomly chosen student who 

exits early compared to a student who does not exit early (Bowers & Zhou, 2019; Kroese et al., 

2019; Nahm, 2021). For example, an AUC value of 0.75 means indicates that there is a 75 

percent probability that the model will correctly identify a student who exits early, as compared 

to a student who does not. It id important to note that identifying the optimal threshold is not 

specific to the method discussed so far (i.e., logistic regression) but is applicable for any 

prediction approach where the outcome is known or observed. 

2.3.3 Cross-validation  

Cross-validation is an approach to improve model performance. This addresses the issue of 

overfitting, or when a prediction model performs poorly on unseen, new data (Garrett et al., 

2022). Cross-validation is a resampling practice where the data are randomly split into a training 

set and a test set. The model learns from the training data by identifying patterns, trends, and 

relationships between the model's predictors and the outcome of interest. It then applies this 

learned knowledge to generate predictions for each new observation, allowing it to forecast the 

likelihood of an outcome. The trained model is then evaluated with this new, unseen, data that is 

referred to as test data (James et al., 2023; Garrett et al., 2022). There are no standardized 
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guidelines on how data should be split, though the majority of the data are typically allocated for 

the training data to provide the model with a larger dataset for learning. Some researchers follow 

a more balanced approach of splitting the data to a 60% training subset and 40% testing subset, 

and others may prefer a 80% training and 20% testing subset. Researchers also can use two sets 

of observations (one as train data, the other as test data) that differ on one or more characteristics.  

There are variations of cross-validation, one of which is k-fold cross validation. K-fold 

cross-validation is applicable in settings where a researcher may produce multiple models that 

each rely on a unique subset of data that are eventually aggregated into one model. This strategy 

involves the following steps: choosing k folds; splitting the data into k equal sets with the 
1

𝑘
 of the 

data serves as test data and the remainder as train data; calculating the mean squared error (MSE) 

within each fold for each model (Kuhn & Johnson, 2013; Fahrmeir et al. 2022).  

2.3.4 Evaluating model performance  

The approach for evaluating the performance of models with binary outcomes is 

straightforward: it compares the accuracy of predicted outcomes against the actual observed 

outcomes. This method provides a clear assessment of how well the model can correctly classify 

instances, offering valuable insights into its overall effectiveness. 

The standard metric of model performance is the accuracy rate, or the proportion of 

instances in the test data that were correctly classified by the model (Hung et al., 2017; James et 

al., 2021; Bishop, 2024). An intuitive approach to understanding which instances were correctly 

classified is with a confusion matrix that compares predicted and true counts for each outcome 

level. Table 4 provides a hypothetical confusion matrix for a binary classifier (a 2 by 2 matrix) 

that compares predicted labels (i.e., predicted outcomes) with true labels. In this example, the 

outcome of interest is early exit, where students who exited early are the positive class, students 
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who did not exit early form the negative class. The matrix disaggregates instances into four 

groups - true negatives (TN), true positives (TP), false negatives (FN), and false positives (FP).  

Table 4: Hypothetical confusion matrix 

  TRUE LABELS 

  Exited early Did not exit early 

PREDICTED 

LABELS 

Exited early TP FP 

Did not exit early FN TN 

Notes: TP stands for true positive; FN stands for false negative; FP stands for 

false positive; and TN stands for true negative. 

 

The accuracy rate can be found by calculating:  

𝑇𝑃 +  𝑇𝑁

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
× 100 

A key limitation of  the accuracy rate is that it does not provide insight into how well the 

model performs for each class label. Specifically, it fails to reveal the model's effectiveness in 

classifying both the positive and negative classes. There are additional metrics that can be 

extracted from the confusion matrix. These include precision, which measures the accuracy of 

positive predictions; recall or sensitivity, which reflects the true positive rate; and specificity, 

which indicates the true negative rate. Table 5 presents the formulas used to calculate these 

additional metrics (Kroese et al., 2019; James et al., 2023). 

Table 5: Formulas to calculate performance metrics 

 

Metric 

 

Formula 

 

Accuracy 

𝑇𝑃 +  𝑇𝑁

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

 

Recall or sensitivity 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
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Specificity 

𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
 

Notes: TP stands for true positive; FN stands for false 

negative; FP stands for false positive; and TN stands for 

true negative. 

 

2.3.5 Summary of process to build prediction models 

This subsection focuses on diagnostic measures and parameters used for building a robust 

prediction model. So far, 2.3 covered the logistic regression as a standard approach to predict a 

binary outcome, selection of a decision threshold, cross-validation, and metrics to evaluate 

model performance. These guidelines are rooted in prediction literature and are applicable to 

settings where outcomes for each observation are known. The observed outcomes are later 

compared with predicted outcomes to measure model accuracy. Based on prior literature, the 

standard approach to building a prediction system can be summarized as a similar process to 

below: 

1. Retrieve data that includes observed outcome for each unit. 

2. Split the data into a training set and testing set. 

3. Select characteristics or predictors to include in the model using either forward 

selection or backward selection.  

4. Identify the optimal decision threshold using a receiver operator characteristic 

(ROC) curve. 

5. Build a prediction model using training data. 

6. Assess model accuracy by running the model on test data. 

7. Compare the predicted probabilities (from test data) with its observed outcomes to 

calculate metrics such as accuracy, sensitivity, and specificity.  

8. If the model needs to be improved, revisit forward selection or backward selection 

and repeat parts 2 through 7. 

 

 

It is important to note steps to building a prediction model can be applied to models that 

apply logistic regression or machine learning methods -  a set of quantitative methods that will be 

described in the next section. 
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2.4 Machine learning 

2.4.1 What is machine learning? 

Machine learning is a subset of artificial intelligence methods that learn from historical data to 

make predictions. Machine methods, or algorithms, examine characteristics to “learn” about the 

relationship between predictors, or model features, and the outcome of interest (Bishop, 2024). 

There are two categories of machine learning algorithms: supervised and unsupervised. 

Supervised methods rely on labeled data, or data where the outcome of interest is already known. 

The algorithm produces a model to predict the outcome and then compares predicted outcomes 

with actual outcomes. In contrast, unsupervised methods employ unlabeled data, or raw data 

where the outcome is unknown. The goal of unsupervised learning is to draw conclusions in 

given data (Jordan & Mitchell, 2015). This section briefly describes the anatomy of select 

machine learning algorithms and compares it to that of logistic regression.  

2.4.2 Regression approaches 

As discussed in 2.3.1, logistic regressions – regressions where the outcome of interest is binary – 

rely on maximum likelihood estimation (MLE) assumptions. The residual sum of squares (RSS) 

function is a metric that indicates the model’s discrepancy between predicted probabilities and 

true outcomes. Drawbacks to this “unregularized” regression is the inability to detect 

multicollinearity (i.e., when two or more model features are highly correlated to each other) and 

overfitting. For this reason, there are alternative to unregularized regressions that aim to address 

these concerns. This subset of regression methods, called regularized regressions, adds a penalty 

term to the RSS function. This penalty helps shrink the coefficients toward zero, addressing 

issues like multicollinearity and overfitting (Hastie et al., 2009; Friedman, 2023). Figure 2 

provides a graphical overview of 2 common types of regularized regression, each differing in 
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how penalty term is calculated. The figure also highlights the key advantages and drawbacks of 

each regression method, offering a concise comparison to help clarify their respective strengths 

and limitations. 

Figure 2: Comparison of unregularized versus regularized regressions 

 

2.4.4 Tree-based methods  

Decision tree is an algorithm that uses a tree-like structure to make predictions by 

sequentially asking questions based on model features, or predictors it received. The algorithm 

follows a straightforward "if-then" rule system, progressively asking questions that divide the 

data into smaller and groups based on different features. While decision trees are easy to 

interpret and understand, they are prone to overfitting, which can hinder the model's ability to 

generalize on new, unseen data (Brown, 2017; Bishop, 2024). For this reason, rather than 
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building a single decision tree, model performance is generally improved when multiple models 

are aggregated to create a final model, also known as an ensemble model. This subsection 

focuses on ensemble learning in the context of tree-based methods, or methods that use a 

decision tree to represent how different predictors can be used to predict an outcome. 

The motivation behind averaging many models is that it reduces the prediction error from 

a single model, leading to higher overall accuracy than relying on a single model (Breiman, 

2001; Hastie et al., 2009; Brown, 2017). Two common approaches to ensemble individual 

models are bagging (short for bootstrap aggregation) and boosting are widely used approaches to 

ensemble individual models. Table 6 provides a high-level comparison of bagging and boosting.  

Table 6: Bagging versus boosting approaches 

 Bagging Boosting 

Creation Breiman (1996) Freund & Schapire (1999) 

Function Relies on subsamples of data 

randomly drawn from sample 

with replacements. Each model 

is trained on a subsample of data 

Builds an individual model with 

all training data and follows a 

reiterative correction process 

until a predefined number of 

iterations is reached or a 

maximum training error is met.  

Learning process “Parallel” learning since all 

models learn independently 

“Sequential” learning where 

each subsequent model corrects 

the errors made by previous 

models (Polikar, 2012; Mienye 

& Sun, 2022). 

Final decision Majority voting among all 

models where the class with the 

most votes (i.e. the mode) is 

chosen as the final prediction for 

student i. 

The algorithm repeats steps 2 

and 3 until instances of training 

errors are below a certain 

threshold. 

 

Example algorithms Random forest utilizes bagging 

to create a random, uncorrelated 

“forest” or a collection of 

decision trees 

There are variations of boosting 

such as AdaBoost, gradient 

boost, and extreme gradient 

boost (XGboost) 
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The two most prominent machine learning algorithms that apply boosting are AdaBoost 

and gradient boost. AdaBoost adds a weighted error to the previous model’s erroneous prediction 

samples, forcing the next model to prioritize the misclassified sample. The weighted error is 

computed with the specification: 

𝐹(𝑥) =  ∑ 𝛼𝑡ℎ𝑡(𝑥) 

𝑇

𝑡=1

 

where for T iterations, a weak hypothesis ht receives a weighted error (Kunapuli, 2023; Polikar, 

2012). On the other hand, gradient boost trains new models with residual errors from a previous 

model. Gradient boost has been widely used in Kaggle and other machine learning competitions. 

Developed by Chen & Guestrin (2016), XGBoost is a gradient boost method that offers 

improvement from gradient boost in the following ways: XGBoost uses lasso (L1) and ridge (L2) 

regularizations to prevent overfitting and can handle missing values in data, reducing the time 

towards data preparation (Chen & Guestrin, 2016; Khan et al., 2024). Since its introduction, 

XGBoost has gained widespread popularity in the data science community. It has played a key 

role in nearly all instances where individuals and teams have won prestigious machine learning 

competitions such as Kaggle, where data miners and statisticians compete to develop the most 

accurate models for predicting and analyzing data provided by researchers and companies 

(NVIDIA, 2023).  

2.4.5 Advantages of machine learning 

In predictive analytics, alternative methodologies to machine learning are frequently 

employed, with survival analysis being one of the most prominent. Unlike machine learning 

models, which primarily predict the occurrence of an event, survival analysis extends this by not 

only assessing whether an event occurred but also examining when that event transpired – also 
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known as the time-to-event. This makes survival analysis particularly valuable in fields such as 

health sciences, where it is often used to predict events like heart failure or the likelihood of 

relapse following the initiation of a new treatment (Schober & Vetter, 2018). Commonly used 

survival analysis methods include the Cox Proportional-Hazards model and the Kaplan-Meier 

estimator, both of which are adept at handling censoring, a situation where the time to the event 

is unknown or incomplete (i.e., censored data). 

Survival analysis is typically not employed in dropout prediction contexts, as the focus in 

such settings is primarily on whether dropout occurs, rather than on the duration leading up to it. 

However, despite its applicability in time-to-event problems, survival analysis presents several 

limitations when used for dropout prediction. 

The first drawback is the reliance on assumptions that may not always hold in real-world 

applications. For instance, the Cox proportional-hazards model assumes that the hazard ratio 

(i.e., risk ratio of dropping out) remains constant over time – an assumption that may not be valid 

in many situations, as a student’s hazard likelihood may fluctuate over time. Research in dropout 

prediction has consistently shown that academic disengagement in the years leading up to high 

school, particularly during 9th grade, is a strong predictor of early school exit (Neild et al., 2008; 

Bowers & Sprott, 2012a, 2012b; Allensworth et al., 2013; Knowles, 2015), suggesting that the 

assumption of proportional hazards may not be appropriate in this context. 

A second limitation is that traditional survival analysis techniques struggle to manage 

high-dimensional data (Huang et al., 2023). In contrast, machine learning algorithms are better 

equipped to handle datasets where the number of predictors exceeds the number of observations. 

In recent studies comparing machine learning approaches with survival analysis models, machine 
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learning techniques have demonstrated superior predictive performance (Gong et al., 2018; 

Spooner et al., 2020; Srujana et al., 2024; Kolasseri, 2024). 

In summary, while survival analysis provides valuable insights for time-to-event 

predictions, machine learning methods enhance these approaches by leveraging complex 

algorithms capable of managing larger, more intricate datasets, thereby improving the prediction 

of survival outcomes. 

Compared to conventional prediction methods, such as logistic regression, machine 

learning offers several advantages. First, machine learning algorithms can handle a much larger 

number of predictors. Second, machine learning enables process automation. Models can be 

trained with hyperparameters, or optimal parameters that control the learning process to achieve 

a desired accuracy. Hyperparameters reduce the need for human intervention and to run multiple 

models to achieve successful predictions. Machine learning offers ease in dimension reduction; 

especially for systems and states that are overwhelmed with years of education records, certain 

algorithms can reduce the number of predictors or dimensions while retaining as much 

information as possible (Brown, 2017). And lastly, logistic regression struggles with 

understanding complex relationships. For example, a logistic regression cannot identify sub-

predictors for specific student subgroups, making it more challenging to detect heterogeneity 

(Kroese et al., 2019). 

2.5 Challenges with dropout prediction 

This section confronts several barriers to building a robust dropout prediction model. The 

barriers described in this section include the tension between model accuracy and 

interpretability; issues with model generalizability; complications arising when training data 
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exhibit unequal representation by outcome label; and when models inadvertently perpetuate 

discriminatory practices that are often embedded in the data. 

 To explore these barriers in depth, I begin by outlining their theoretical foundations, 

drawing on empirical research that either validates, challenges, or offers solutions to these issues. 

The remainder of this chapter embeds a synthesis of 19 select dropout prediction studies as a 

comparison group. These studies are referred to as recent studies. The goal of this synthesis is to 

survey the strengths and limitations of recent dropout prediction efforts. These studies meet three 

key criteria: 1) they have been completed or published in the last 10 years (i.e., since 2015), 2) 

they have either been published in a peer-reviewed journal or presented as a doctoral dissertation, 

and 3) they leveraged student-level data to predict the likelihood of dropout, either at the K-12 

level or at the postsecondary level. The purpose of reviewing these studies is to critically 

examine their methodological rigor, assess how well they address the inherent challenges in 

dropout prediction, and identify best practices that can inform future research in this field. 

2.5.1 Model accuracy versus model interpretation 

Breiman, the pioneer behind the random forest machine learning approach, delineated 

two contrasting approaches in prediction modeling: data modeling, which prioritizes model 

interpretability, and algorithmic modeling, which emphasizes predictive performance. In his 

seminal 2001 paper, Breiman posited that only 2% of statisticians adhered to the algorithmic 

modeling culture, while approximately 98% remained aligned with the data modeling tradition 

(Breiman, 2001). This dichotomy was confirmed in an extensive review of over 100 dropout 

flags by Bowers (2013), which revealed that none of the dropout prediction studies had reported 

accuracy and instead reported p-values and model fit. Table 7 summarizes how recent studies 

have assessed model performance.  
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Table 7: Evaluation Metrics of Prior Studies 

 

 

I find that many dropout prediction studies since Bowers’ (2013) review have placed 

considerable emphasis on prediction accuracy. Of the 19 dropout prediction studies, all went 

Study AUC/ 

ROC 

  

Accuracy Sensitivity Specificity F-1 

score 

PR 

curve 

P -

value 

Root 

MSE 

Anderson et al. 

(2019) 

✓ 
       

Cannistrà et al. 

(2022) 

✓ ✓ ✓ ✓ 
    

Chen & Ding 

(2023) 

 
✓ 

      

Gardner et al. 

(2019) 

✓ 
       

Gutierrez-Pachas 

et al. (2022) 

✓ 
      

✓ 

Knowles (2015) ✓ 
       

Kruger (2023) 
  

✓ ✓ 
 

✓ 
  

Lee & Chung 

(2019) 

✓ 
    

✓ 
  

Lee & Kizilcec 

(2020) 

 
✓ ✓ ✓ ✓ 

   

Nájera & Ortega 

(2022) 

  
✓ ✓ ✓ 

   

Nascimiento et al. 

(2022) 

✓ 
     

✓ ✓ 

Oz et al. (2023) ✓ 
 

✓ ✓ 
    

Sansone (2019) ✓ ✓ ✓ 
     

Selim & Rezk 

(2023) 

✓ 
 

✓ 
     

Sha et al. (2022) ✓ 
       

Sorenson (2019) ✓ 
 

✓ 
     

Weissman (2022) ✓ 
 

✓ 
     

Yu et al. (2021) 
  

✓ 
   

✓ 
 

Notes: AUC stands for Area Under Curve; ROC stands for Receiver Operating Characteristic; AUC/ROC refers 

to the metric that the study reported either the AUC for its models or that it presented ROC curves to 

demonstrate model performance. Accuracy refers to the proportion of correct predictions out of all model 

predictions. Sensitivity, or recall, is the true positive rate, or the proportion of true positives out of all actual 

positives. Specificity is the true negative rate, or the proportion of true negatives out of all actual negatives. PR 

curve is short for precision-recall curve and refers to the metric that the study presented PR curves to 

demonstrate model performance. P-value stands for probability value; it refers to the estimated probability of 

rejecting the null hypothesis that there is no difference between two or more reported values. MSE stands for 

mean squared error; root MSE is the standard deviation of the residuals, or prediction errors. 
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beyond p-values to assess model performance. Most included AUC values or ROC curves, with 

around a quarter reporting prediction accuracy. However, a significant majority did focus on 

sensitivity, reflecting an increasing emphasis on accurately identifying students who are likely to 

drop out. This shift highlights a growing recognition of the importance of predicting the positive 

class – students who are at risk of exiting early. In contrast with findings presented by Bowers 

(2013), there is evidence suggesting that recent studies have moved away from relying on p-

value significance, instead prioritizing the reporting of prediction accuracy. Additionally, I find 

that the models in these studies performed better than a random 50-50 guess. 

Despite their impressive predictive capabilities, there remains a critical gap in 

understanding the inner workings of prediction models. The lack of transparency in how models 

arrive at their decisions raises concerns, especially in high-stakes domains such as education, 

where the implications of AI-driven predictions can be profound (Bowers, in press; Du et al., 

2021; Feng & Law, 2021; Herodotou et al., 2020). In my review of recent studies, fewer than 

half of them included an interpretation of their model findings (see Table 8).  
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Table 8: Accuracy versus Interpretation of Prior Studies 

Study Accuracy Interpretation How models were 

interpreted 

Anderson et al. (2019) ✓ 
   

Cannistrà et al. (2022) ✓ ✓ Variable importance, 

partial dependence 

plots, regression 

coefficients 

Chen & Ding (2023) ✓ 
   

Gardner et al. (2019) 
    

Gutierrez-Pachas et al. (2022) ✓ ✓ Variable importance 

Knowles (2015) ✓ ✓ Variable importance 

Kruger (2023) ✓ ✓ SHAP value; variable 

importance 

Lee & Chung (2019) ✓ 
   

Lee & Kizilcec (2022) ✓ 
   

Nájera & Ortega (2022) ✓ ✓ Variable importance 

Nascimiento et al. (2022) 
    

Oz et al. (2023) ✓ ✓ SHAP value 

Sansone (2019) ✓ ✓ Variable importance 

Selim & Rezk (2023) ✓ ✓ Regression coefficients 

Sha et al. (2022) ✓ 
   

Sorenson (2019) ✓ ✓ Variable importance 

Weissman (2022) ✓ 
   

Yu et al. (2021) ✓ 
   

 

Among those that did report features associated with dropout, most used variable 

importance plots to interpret the models. These plots show the mean decrease in accuracy for 

each feature, illustrating the mean decrease in accuracy of each model feature. In other words, 

variable importance plots describe the contribution of each feature to the model’s predictive 

performance. Cannistrà et al. (2022) also included partial dependence plots, a graph that shows 

the functional form that links the feature to the outcome without posing parametric assumptions. 

Merely two studies have included SHapley Additive Explanations (SHAP) value plots, a 

visualization that relies on horizontal bars to represent the magnitude and direction of each 

model feature (Johnson, 2023). As mentioned in 2.3.1, regression coefficients are typically 
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provided for regression-based models such as logistic regression, lasso, and ridge regression. 

This reflects the prioritization of algorithmic prediction over model interpretation, signaling a 

potential reversal of the 2:98 ratio posited by Breiman (2001). 

Model interpretation is essential for three reasons. First, it refines and optimizes model 

performance by addressing biases and disparities that may be inherent in the data. A clear 

understanding of how a model makes its predictions will allow users to scrutinize the data inputs 

and model behavior, helping them detect and mitigate biases that may otherwise go unnoticed.  

Second, it improves trust and accountability. If these systems are perceived as "black 

boxes," where predictions are made without clear explanations, it can erode confidence in the 

school or district’s recommendations. Many machine learning approaches, especially newer 

ensemble approaches that incorporate boosting, are perceived as both “complex and largely 

unknown” (Parker et al., 2017; Nussberger et al., 2022; Purcell, 2024) 

Third, model interpretation is key to ensuring that the next steps for dropout prevention 

are aligned with the students’ needs. By understanding the model’s reasoning, users can design 

and deliver targeted supports and services that align to the student's needs. For example, a 

prediction might indicate that a student is at risk of dropping out of high school, but without 

understanding whether it is driven by academic challenges, attendance, or student behavior, 

decision-makers cannot provide the appropriate support or services that are needed.  

Although recent dropout prediction studies demonstrate prioritization of model accuracy 

over model interpretation, I argue that there is a need for dropout prediction work to place a 

similar emphasis on model interpretation and contribute to understanding what factors contribute 

to student withdrawal. Improved model interpretation in early warning systems is essential to 

foster accountability, fairness, and efficacy. 
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2.5.2 Generalizability 

A significant obstacle that early warning systems face is generalizability, or the extent to 

which predictive models maintain their accuracy and validity across varying contexts, 

populations, and time periods. In the context of machine learning applications, this issue 

becomes particularly pronounced, as models often require frequent retraining using data from 

different school systems and different academic years to ensure robustness. For instance, a 

predictive model developed with data from students graduating in 2018 may not yield the same 

level of accuracy for students graduating in the post-pandemic era, as shifts in educational 

conditions and student behavior could influence the factors contributing to graduation outcomes. 

Existing research on the generalizability of early warning systems has yielded limited 

success in overcoming this challenge. Studies such as those by Stuit et al. (2016), Coleman et al. 

(2019), and Coleman (2021) have demonstrated that attempts to apply these systems across 

varied contexts often fail to produce consistent or reliable results. This raises important questions 

about the ability of early warning systems to adapt to changing educational environments and 

highlights the need for further exploration into methods for improving their generalizability. 

2.5.3 Imbalanced data  

In prediction science, the categorical outcomes (also referred to as classes) are imbalanced if a 

dataset has many more instances of some classes than others. Class imbalance poses a challenge 

in building prediction models because when using an imbalance dataset, the predictive accuracy 

is poorer for minor classes and higher for the major classes (Bishop, 2024; James et al., 2021; Ali 

et al., 2013). Moreover, when class imbalance is not addressed, performance metrics often 

overlook misclassifications of the minority class, which can lead to an increased false positive 

rate (Fernandez et al., 2018; Kuhn, Johnson, et al., 2013).  This issue is particularly prevalent in 
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dropout prediction, where the number of students who drop out is substantially outweighed by 

those who persist in school. To address this well-known issue, scholar recommendations fall in 

four areas: examine precision-recall curves, oversample the minority class, undersample the 

majority class, and assign class weights. Table 9 provides a breakdown of these four approaches. 

Table 9: Approaches to address class imbalance 

 Precision-recall 

(PR) curves 

Oversample minority 

instances 

Undersample majority 

instances 

Class weights 

Development Manning & 

Schutze (1999) 

Chawla et al. (2002) Many since 1976 (see 

examples) 

Not applicable 

Objective Increased attention 

to false positive 

rates 

Balance the ratio 

between majority and 

minority instances 

Balance the ratio 

between majority and 

minority instances 

Assign class 

weights so that the 

model will give 

more importance to 

minority instaces 

Approach An alternative to 

ROC curves that 

instead examine 

the tradeoff 

between true 

positives (recalls) 

and true negatives 

(precision) 

Synthetic Minority 

Oversampling 

Technique (SMOTE) 

finds k-nearest neighbors 

from the minority class 

and takes a weighted 

average between the 

instance and its 

neighbors. 

Reduces majority 

instances by random or 

by selecting n instances 

from the majority class 

that are closest to the 

minority class. Then, 

for each of the k 

instances in the 

minority class, the 

technique resamples the 

majority class to 

include k × n 

observations. 

Typically involves 

inverse probability 

weighting, or class 

weights that are 

inversely 

proportional to their 

respective 

frequencies (Géron, 

2022; Krawcyzk, 

2016). 

 

Class weights are 

analogous to sample 

weights which are 

often employed in 

survey analysis. 

 

Examples PR-curves have 

found more 

promising results 

than ROC curves 

in (Davis et al., 

2006; Cook & 

Ramadas, 2020; 

Sofaer et al., 

2019). 

ADASYN SMOTE by 

He et al. (2008); 

Borderline-SMOTE by 

Han et al. (2005); and 

density-based SMOTE, 

(Bunkhumpornpat et al., 

2012). 

Near-Miss by Zhang 

and Mani (2003); 

Tomek Links by Tomek 

(1976); and cluster 

centroids by Lin et al. 

(2017). 

Not applicable 

 

Among the 19 dropout prediction studies I reviewed, two examined Precision-Recall 

(PR) curves (Lee & Chung, 2019; Kruger, 2023). While Lee and Chung (2019) examined both 
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Receiver Operating Characteristic (ROC) and PR curves and found that both approaches 

identified the same model with the highest accuracy, they concluded that PR curves offered more 

distinct AUC values, enabling clearer differentiation of model performance.  

Since its introduction in 2002, SMOTE has proven successful across various domains and 

is integrated into a wide range of software packages, both commercial and open-source 

(Fernández et al., 2018). However, in dropout prediction settings, SMOTE remains underutilized. 

Among the recent dropout prediction studies reviewed, only Lee & Chung (2019) and Sha et al. 

(2022) addressed class imbalanced with SMOTE. 

2.5.4 Model discrimination 

Early warning systems are trained on historical data. There is evidence that historical data, 

especially student education records, can capture systemic inequities ingrained in student 

experiences. These inequities are reflected in settings such as disproportionate rates of failure or 

disengagement among students from marginalized backgrounds (Perdomo et al., 2023; Baker, 

2023). It is critical to ensure that models are transparent and are not perpetuating or worse, 

amplifying inequities. This can lead to harmful consequences like misidentifying certain groups 

as at-risk when they might not be or failing to identify students who genuinely need attention.  I 

highlight two such failures of early warning system that perpetuated existing inequities: in 

Wisconsin and in the United Kingdom. 

The failure of Wisconsin’s statewide early warning system (DEWS) to provide racially 

equitable predictions shocked the education and the data science field. Despite the predictive 

prowess of DEWS demonstrated by Knowles (2015), a 2021 equity analysis conducted by 

Wisconsin’s Department of Public Instruction (DPI) equity found that the system’s false negative 

rate – how often a student who did graduate on time was misclassified as high-risk – was 
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disproportionately higher for students of color. Specifically, the false negative rate for Hispanic 

and Black students was 18 and 42 percentage points higher, respectively, compared to their 

White peers (Feathers, 2023a).  

Another notorious failure is the 2020 United Kingdom (UK) A-Level grading controversy 

that replaced standardized tests with teacher predictions adjusted based on the “quality of the 

school.” The poorly designed algorithm systematically lowered grades for students at lower-

income schools (Baker, in press; Smith, 2020; Idowu, 2024).  

Both operational failures led students, communities, institutions, and stakeholders to be 

skeptical of the fairness around complex artificial intelligence models – and with good reason. 

The following subsection will briefly cover the debate around the inclusion of demographic 

information in education settings.  

2.6 Use of demographic information in prediction models 

2.6.1 Debate of using demographic information in education  

The use of demographic data to understand student engagement and decision-making is 

controversial and complex. This review follows the sociological definition of a demographic as a 

characteristic of an individual that, while subject to manipulation in an experimental sense, may 

evolve over time as the individual’s self-awareness develops (Davis & Museus, 2019). While 

there are many types of demographic characteristics, I interrogate literature related to four 

commonly utilized categories in education: gender, race and ethnicity, financial hardship, English 

proficiency, and disability status. Proponents for the inclusion of demographics in education 

argue that it identifies racial disparities in educational outcomes, which can in turn be used to 

close the achievement gap. Opponents against the consideration of demographics argue that 1) it 

reinforces a focus on individual deficiencies rather than strengths, a mindset commonly referred 
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to as deficit-based thinking, and 2) there are legal and ethical considerations regarding the 

protection of student privacy that are overlooked, and 3) the ability to act on predictions based on 

demographics. 

First, supporters contend that examining disparities in education is critical to 

understanding and closing the achievement gap. The achievement gap refers to the persistent 

disparity in educational outcomes for students from historically marginalized backgrounds, 

typically defined by race and ethnicity, socioeconomic status, and English proficiency. Though 

racial disparities in educational attainment have reduced over the years, there is overwhelming 

evidence that children living in poverty, Black and Hispanic students, and students who are not 

English proficient are significantly less likely to succeed compared to their advantaged peers 

(NCES, 2024; Reardon, 2019). Understanding minority students’ engagement and achievement 

can ensure that services are accessible to all racial/ethnic groups and allocate a fair distribution 

of funding and resources. The emphasis on ensuring success for students from all backgrounds is 

reflected in accountability laws like No Child Left Behind (NCLB), which mandates that schools 

report high school graduation rates broken down by student subgroups. This requirement aims to 

hold schools accountable for the academic progress of all students, ensuring that disparities in 

graduation rates are recognized and addressed. By tracking performance across different 

demographic groups, the law seeks to promote transparency and encourage targeted interventions 

to support underserved students. Furthermore, it enables a fairer allocation of funding and 

resources, ensuring that underserved communities receive the support they need to succeed.  

The first argument to exclude demographic considerations in education is that it promotes 

deficit-based thinking. Deficit-based thinking is the belief that students from marginalized 

backgrounds (e.g. Black, Hispanic, access to limited financial resources, and non-English 
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proficient) are inherently lacking in abilities, skills, or potential. This mindset blames minority 

students’ failures in school as an inherent “deficit” rather than recognizing inherent inequities 

enacted by social policies and practices at play (Gorski, 2010; Davis & Museus, 2019). This sets 

up a dangerous complex where, if adopted by teachers and school leaders, subjects students to 

racism and xenophobia. For this reason, some advocates recommend ignoring or downplaying 

demographic characteristics in educational settings, suggesting that all students should be treated 

identically—an approach commonly referred to as adopting a "colorblind" lens. 

The second argument for excluding demographic characteristics in educational settings 

revolves around ethical and legal concerns. Opponents argue that student privacy must be 

safeguarded, as the misuse of sensitive data without proper protection can violate ethical 

standards and undermine trust between students, families, and institutions. In the U.S., laws such 

as the Family Educational Rights and Privacy Act (FERPA) protect the privacy of student 

records in all educational agencies and institutions receiving federal funds (Department of 

Education, 2022). However, historical analyses have revealed unintended consequences and 

lapses in FERPA's enforcement, leading to violations of student privacy (Vance & Waughn, 

2020). Recent studies have highlighted several shortcomings in FERPA, including its negative 

impact on students’ access to opportunities and its role in the overrepresentation of Black 

children in school disciplinary actions (Peter, 2021); for inadequately protecting female student 

privacy (Daggett, 2020); failing to address issues related to facial recognition technology, which 

may marginalize students of color, women, and people with disabilities (Galligan et al., 2020; 

Bala, 2019). There is sufficient evidence that underscores the urgency to develop fair and 

balanced educational privacy legislation. 
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A third reason to exclude demographic characteristics in prediction models is 

actionability. Actionability refers to the extent to which schools and systems can provide 

supports and services based on a student’s individual needs, rather than on factors outside of their 

control. If a student is labeled as high-risk primarily because of something that is either not 

malleable or beyond the individual’s control (such as gender, race and ethnicity, or 

socioeconomic status) then it would not be appropriate to provide an intervention based on these 

sensitive attributes (Fassett et al., 2022; Baker, 2023a; Paquette et al., 2020).  For example, a 

student’s race or family income may correlate with certain risks but does not directly indicate 

specific actions that can be taken to improve the student’s educational outcomes. Instead, 

focusing on factors that can be changed or influenced, such as academic performance, 

engagement, and behavioral patterns, allows educators to implement interventions that are more 

actionable and responsive to the student's actual needs, without perpetuating biases or unfairly 

targeting certain groups. 

2.6.2 Inclusion of demographics in dropout prediction  

Since machine learning algorithms are designed to identify implicit patterns within the data they 

are given, these models can often capture reflect the social biases that are embedded within the 

data (Rosenbaum, 2001; Feldman et al., 2015; Baker, 2023a). This subsection examines the 

extent to which recent studies have included demographic characteristics to predict student 

outcomes. 

A survey of educational data mining studies published between 2015 and 2020 in the 

Journal of Educational Data Mining (EDM) found that 15 percent of publications associated with 

included demographic information in their analyses, and that the frequency of reporting different 

types of demographic data is uneven (Paquette et al., 2020). In my review, I find that twelve of 
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the recent studies included gender as a predictor, and of those twelve, eight also included race 

and ethnicity as predictors (see Table 10). Socioeconomic status, disability status, and English 

proficiency were included in far fewer studies. 

Table 10: Demographic information used in prior studies 

Study Gender Race/ ethnicity 

Economically 

disadvantaged 

Having a 

disability 

English 

Proficiency 

Anderson et al. (2019) ✓ ✓ 
   

Cannistrà et al. (2021) ✓ ✓ ✓ 
  

Chen & Ding (2023) -- -- -- -- -- 

Gardner et al. (2019)      

Gutierrez-Pachas et al. (2022) ✓ 
    

Knowles (2015) ✓ 
✓  

✓ ✓ 

Kruger (2023)      

Lee & Chung (2019)      

Lee & Kizilcec (2022) ✓ 
✓    

Nájera & Ortega (2022) ✓ 
    

Nascimiento et al. (2022)      

Sansone (2019) ✓ 
✓    

Selim & Rezk (2023) ✓ 
    

Sha et al. (2022) ✓ 
    

Sorenson (2019) ✓ ✓ ✓ ✓ 
✓ 

Weissman (2022) ✓ ✓ ✓ ✓ 
 

Yu et al. (2021) ✓ ✓ ✓ 
  

Notes: Oz et al. (2023) was not included in this table because they examined household-level characteristics. 

Chen & Ding (2023) did not describe what predictors used in their model, therefore values in that row are 

denoted with “--". 

 

It is worth noting that Yu et al. (2021) examined model fairness of “aware” models that 

did include sensitive attributes as predictors, and “blind” models that did not include sensitive 

attributes as predictors. This approach strengthened its conclusions about the role of 

demographic information in prediction models. I echo the points made in Baker et al. (2023a) 

and argue that future studies should take a clearer stance on the use of demographic information. 

This could either come from the comparison of "aware" or "blind" models, or by the use of 
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demographic characteristics to assess model fairness, rather than incorporating it as a model 

predictor. 

2.7 Metrics to evaluate algorithmic fairness  

This remainder of this section discusses algorithmic bias, or the systematic discrimination 

of models to produce predictions that disadvantages observations who come from protected 

attributes (i.e., historically marginalized backgrounds). Since data capture the historical 

inequities embedded within the education system, it follows that machine models that are trained 

on this data will internalize and perpetuate these biases in model predictive models (Jiang & 

Pardos, 2021; Idowu, 2024; Yu et al., 2020). Algorithmic bias is evident in prediction model 

settings, with Wisconsin’s and the UK’s early warning system demonstrating the profound effects 

of discriminatory predictions (Baker & Hawn, 2022; Feathers, 2023a; 2023b). I review four 

criteria to evaluate algorithmic bias: group differences, Absolute Between-ROC Area 

(ABROCA) method, equalized odds, and demographic parity. Table 11 organizes the key points 

of each criterion and compares its approach, strengths, and potential drawbacks. While there is 

no universal agreement on an optimal fairness metric, these efforts collectively demonstrate a 

commitment to ensuring that model predictions do not reinforce systemic inequities embedded in 

the data.  

Table 11: Metrics to evaluate algorithmic fairness 

Approach Description Key Metrics Strengths Limitations 

Group differences Measures disparities 

in model 

performance across 

subgroups based on 

protected attributes. 

AUC, false positive 

rate, false negative 

rate, accuracy, 

recall, precision, 

etc. 

Provides direct 

insight into model 

disparities across 

groups (e.g., gender, 

race, etc.). 

Lacks 

standardization 

across studies, 

making it difficult 

to generalize 

findings or compare 

results. 

ABROCA 

(Gardner et al., 

2019) 

Evaluates the 

difference in model 

performance 

between baseline 

ABROCA value, 

calculated as the 

integral of the 

absolute difference 

Captures fairness 

across all 

thresholds, not just 

specific values, 

Complex to 

calculate and 

interpret; not widely 

adopted in research. 
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and comparison 

groups using ROC 

curves. 

between ROC 

curves for different 

subgroups. 

offering a more 

nuanced evaluation. 

Equalized Odds 

(Hardt et al., 2016) 

Ensures that both 

true positive and 

false positive rates 

are equal across 

groups. 

True Positive Rate 

(TPR), False 

Positive Rate (FPR) 

across groups. 

Guarantees fairness 

in terms of decision-

making outcomes, 

ensuring no 

systematic bias in 

predictions. 

Does not account 

for varying levels of 

accuracy across 

subgroups, which 

can affect fairness 

in resource 

allocation. 

Demographic 

Parity 

(Dwork et al., 

2012) 

Requires equal 

probability of a 

positive outcome 

across groups, 

independent of 

protected attributes. 

Probability of 

positive prediction 

across groups. 

Ensures equal 

chances of positive 

outcomes for all 

groups. 

May ignore 

individual fairness 

and is less suitable 

in contexts where 

group membership 

should affect 

outcomes. 

 

Despite the importance of fairness evaluation in predictive modeling, relatively few 

dropout prediction studies have incorporated such steps in their analyses. Among the studies I 

reviewed, only Sha et al. (2022) incorporated an ABROCA slicing. In contrast, several other 

studies have reported model performance across student subgroups, providing insights into how 

different groups of students fare in terms of dropout risk (Anderson et al., 2019; Lee & Kizilcec, 

2022; Weissman, 2022; Yu et al., 2021). This disparity highlights a significant gap in dropout 

prediction research, where more comprehensive fairness and equity analyses are needed to 

ensure that predictive models are not only accurate but also equitable across diverse student 

populations. The absence of such analysis risks reinforcing existing disparities or overlooking 

the specific needs of marginalized student groups. 

2.8 Standards for early warning systems 

While there have been no established standards for what defines a high-quality, equitable 

early warning system, recent efforts have proposed criteria to guide its development. Bowers 

(2021) outlines four key characteristics of robust, equitable early warning systems: they should 

be accurate, accessible, actionable, and accountable. 'Accurate' in that the model provides 
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accurate predictions for new data instances. 'Accessible' refers to the ability for the public to 

understand how predictions are made, including opportunities for replication and reproducibility. 

'Actionable' means the identified predictors are malleable and can be used to tailor targeted 

supports, services, and interventions. 'Accountable' ensures that models are routinely evaluated 

for algorithmic bias and fairness. (Bowers, 2021). In my review, I find that all but one study 

meets the accuracy criteria for model performance (see Table 12). These studies assessed model 

performance using at least one of the following methods: receiver operating characteristic (ROC) 

curve analysis, precision-recall curve analysis, or accuracy rate. 

Table 12: 4 “A”s in prior studies 

Study Accurate  Accessible  Actionable  Accountable  

Anderson et al. (2019) ✓   ✓ 

Cannistrà et al. (2022) ✓ 
 ✓  

Chen & Ding (2023) ✓ 
   

Gardner et al. (2019) ✓ 
  ✓ 

Gutierrez-Pachas et al. (2023) ✓ 
 

✓ 
 

Knowles (2015) ✓ 
✓ ✓ 

 

Kruger (2023) ✓ 
 

✓ 
 

Lee & Chung (2019) ✓ 
 

✓ 
 

Lee & Kizilcec (2022) ✓ 
  ✓ 

Nájera & Ortega (2022)   ✓  

Nascimiento et al. (2022) ✓ 
   

Oz et al. (2023) ✓ 
 

✓ 
 

Sansone (2019) ✓ 
 

✓ 
 

Selim & Rezk (2023) ✓ 
 

✓ 
 

Sha et al. (2022) ✓ 
  ✓ 

Sorenson (2019) ✓ 
   

Weissman (2022) ✓ 
  

✓ 

Yu et al. (2021) ✓ 
  

✓ 

 

Just over half of the reviewed studies go a step further by interpreting model findings and 

identifying key features associated with early exit, making their findings actionable for 

practitioners. One-third of the studies promote accountability by incorporating fairness analyses, 
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employing methods such as differences in group performance, ABROCA slicing analysis, 

equalized odds, or demographic parity. However, it is disappointing that, to date, Knowles (2015) 

remains the only study to have fully published their algorithm and code, enabling critique and 

replication by other researchers and practitioners. 

I argue that future dropout prediction work should strive to ensure that the work is 

accessible. Most dropout prediction studies to date have not replicated established models using 

new, unseen data. This lack of validation on external datasets limits the generalizability and 

robustness of findings. A few notable exceptions (Knowles, 2015; Bowers et al., 2013; Coleman 

et al., 2019) have made their code publicly available, thus contributing to the open science 

movement, which advocates for the sharing of code to support the confirmation, reproducibility, 

and further extension of research findings (Agasisti & Bowers, 2017; Bowers et al., 2019; 

Bowers, 2021). By sharing code, researchers enable others to test, adapt, and build upon their 

work, fostering a more collaborative and reliable scientific community.  

2.9 Rationale for this work 

This dissertation strives to meet the 4A criteria proposed by Bowers (2021): accurate, actionable, 

accountable, and accessible. First, I demonstrate accuracy of my models using multiple 

techniques: cross-validation on a new, unseen student population and explore multiple 

resampling techniques to address class imbalance. Second, I apply various approaches to 

interpret the predictors identified in the models, including feature importance plots and SHapley 

Additive Explanations (SHAP) values. To enhance the actionability of my work, I explore 

strategies for communicating these results to a non-technical audience and simplifying the 

interpretation of "black box" models. Third, I ensure that my work is accountable by assessing 

algorithmic fairness, reporting the Absolute Between-ROC Area (ABROCA) and equalized 
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opportunity metrics. Finally, I promote transparency and accessibility by providing open access 

code and output, inviting discussion, critique, and reproducibility. This would be the only known 

study since Knowles (2015) that ensures findings are accessible to the public.  

 Another contribution of this work is its focus on the temporal aspect of student dropout, 

specifically by analyzing patterns of student exits over time. This approach not only enhances the 

precision of at-risk identification but also allows for more targeted and timely support, 

potentially reducing dropout rates before students reach a critical point.  

Chapter summary 

Understanding prior efforts in dropout prediction highlights several gaps in this area of research. 

First, these efforts rarely address class imbalance and its potential to improve model accuracy. 

Second, although these studies seek identify factors that are predictive of student exit, recent 

studies have not put in effort to ensure that model findings are interpretable to a non-technical 

audience. Third, few studies to date have assessed if models discriminate on student attributes, 

using new approaches to evaluate algorithmic fairness.  

This underscores a need to extend existing knowledge of machine methods to monitor 

student engagement without associating outcomes with structural inequities. This, in turn, can 

help school leaders, policy makers, and stakeholders learn about student disengagement and how 

it may shape student persistence in high school.  
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CHAPTER 3: METHODS 

Chapter introduction 

The goal of this dissertation is to develop a predictive model that leverages middle school 

engagement data to identify students at risk of dropping out of high school during 9th or 10th 

grade. This chapter provides an overview of the analytic approach for my dissertation. First, I 

provide a justification of the decision-making process to use middle school data to predict high 

school exit, followed by a brief description of the data from NCERDC and the training and 

testing sample. After describing the outcome of interest – whether a student exits high school in 

9th or 10th grade – as well as describing the middle school engagement data that are used as 

predictors, I outline the empirical strategy to answer each research question.  

For the first question, I create prediction models that employ one of the following 

approaches: logistic regression, lasso regression, ridge regression, random forest, and XGboost. I 

test if the prediction accuracy of these models can be improved by applying resampling 

techniques such as undersampling majority instances (i.e., instances who do not exit early) and 

oversampling minority instances (i.e., instances who do not exit early) so that their representation 

in the training data is equal. I evaluate the predictive accuracy of these models using multiple 

metrics, such as, accuracy, sensitivity, precision, and specificity. 

The second question assesses the extent to which the models developed in the first 

question provide fair predictions for students in marginalized subgroups, or protected attributes. 

The protected attributes of focus are having a race or ethnicity that is not White, being 

economically disadvantaged, having an IEP, and being Limited English Proficient. I assess 

algorithmic fairness using two approaches: the ABROCA metric (Gardner et al., 2019) and 

equalized odds metric (Hardt et al., 2016).  
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For the third research question, I interpret model findings for selected models that 

demonstrated model accuracy (as examined in the first research question) and algorithmic 

fairness (that was explored in the second research question). I then rank the salient predictors 

from the subset of models to better understand which factors are associated with early exit, as 

well as to understand potential overlap in relevant predictors across all the models. I rely on 

regression coefficients, feature importance plots, and Shapley Additive exPlanations (SHAP) 

plots to understand which features are predictive of early exit. 

3.1 Conceptual framework  

This analysis examines the academic trajectory of traditional public school students in North 

Carolina. North Carolina’s overall 4-year graduation rate for traditional public school students, 

regardless of student characteristics, has remained steady between 84 to 87 percent in the years 

2014 to 2018. Further examination of high school graduation rates reveals significant variation 

across student subgroups. Figure 3 illustrates the graduation rates over time for three distinct 

student profiles: students who are classified as English Language Learner (ELL), students with 

disabilities (SWD), and students who are neither ELL nor SWD. SWD are defined as students 

who receive services through the Individual Education Program (IEP).2 

 

 

 

 

 
2 This figure includes graduation rates for students who earn two types of diplomas. The first is the Future-Ready 

Course of Study which is North Carolina’s minimum graduation requirements to earn a diploma. The second is the 

Occupational Course of Study which is offered for students with disabilities who have been identified for the 

program. This option adapts course requirements and requires the name number of credits as Future-Ready Course 

of Study (NC DPI, n.d.). 
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Figure 3: North Carolina graduation rates over time  

 

Notes: This graph captures the four-year cohort-adjusted graduation rates for students who attended traditional 

public schools in North Carolina. This was calculated using NCERDC administrative data and may vary slightly 

from North Carolina Department of Public Instruction (DPI) reported estimates. 

 

Compared to peers who do not have ELL status or a disability, both SWD and ELL 

consistently exhibit lower graduation rates. In 2014, the graduation rates for SWD and ELL 

students were 64 percent and 52 percent, respectively. Although ELL students made substantial 

progress in high school completion between 2014 and 2018, the gap in graduation rates remained 

significant, with a difference of nearly 20 percentage points by 2018. Prior research demonstrates 

that these gaps in high school completion rates are pervasive in later life outcomes and are 

associated with profound disparities in long-run economic and social well-being (Belfield & 

Levin, 2007; Rumberger, 2020). Investigating the academic trajectory of students, especially 

those from marginalized backgrounds, is essential for schools and school systems. Early 

identification of at-risk students enables schools and districts to provide targeted interventions, 
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supports, and services that could ultimately improve their academic trajectory and increase the 

likelihood of graduating high school. 

North Carolina is a unique observational setting because of its school age policies, where the 

compulsory school starting age is 7 years old until 16 years old. In settings where the 

compulsory attending span is 9 years, many high school students turn 18 prior to entering 12th 

grade. This pattern is evident in North Carolina. Figure 4 presents the exit counts for first-time 

12th graders across the state who were expected to graduate in 2018. Students are considered to 

have dropped out, or exited, if they have withdrawn from the North Carolina traditional public 

school system.3  

 

Figure 4: Temporal patterns of early exit for class of 2018 

 

Notes: (N = 15,214). This graph captures counts and percents of the 6th grade students in 2011-2012 cohort who exit 

high school in either 9th or 10th grade. Among the 15,214 students who exited early, 20 percent of these students 

exited in 9th grade; 30 percent exited in 10th grade; 29 percent exited in 11th grade; and 21 percent exited in 12th 

grade.  

 
3 The counts of students presented in Figure 4 does not include students who temporarily exit the school system and 

return in a subsequent year (often referred to as a stopout). A detailed definition and breakdown of how a student is 

classified as an “early exit” is provided in 3.5.1.   
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Of the 15,214 students in the 2018 cohort who dropped out of high school between 9th and 

10th grade, 20 percent of these students exited in 9th grade; 30 percent exited in 10th grade; 29 

percent exited in 11th grade; and 21 percent exited in 12th grade. These figures are concerning, as 

half of the students who permanently discontinue their schooling journey do so in the first two 

years of entering high school. 

This dissertation predicts high school exit in the state of North Carolina for traditional public 

school students who would have completed high school in 2018. Given the high exit rates in 9th 

and 10th grade in this context, I argue that an early warning system should flag students before 

they enter high school.  

As discussed in Chapter 2, there is a lack of research on the timing of providing 

interventions aimed at preventing high school dropout. To date, no studies have explored 

whether there is a critical window during which prevention efforts would be the most effective. 

This presents a challenge for early warning system applications, which typically wait until 

students enter high school before exhibit signs of disengagement. Given the limited 

understanding of how identification timing impacts effectiveness, waiting until high school may 

result in missed opportunities for timely intervention.  

Evidence that half of all dropouts in 2018 exited in the first two years of high school, 

coupled with the absence of evidence around timing of at-risk identification, motivates this 

dissertation to rely on use middle school engagement data to predict early exit. Early 

identification of at-risk students before they enter high school provides schools and districts 

more time to implement targeted interventions and support for these students, possibly 

decreasing the likelihood of dropping out. This dissertation uses supervised learning algorithms, 

or approaches to predict an outcome when the actual outcome is observable. These algorithms 
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learn and build associations between model predictors and the observed outcome so that they can 

eventually apply these associations and patterns to new, unseen data.   

As highlighted in Chapter 2, few studies to date have evaluated if models provide equitable 

predictions for students from marginalized backgrounds. My earlier discussion of Wisconsin’s 

statewide early warning system failure highlights the need to ensure that prediction tools do not 

perpetuate or exacerbate existing structural disparities in educational outcomes. Despite this, 

however, many dropout prediction studies continue to include sensitive student attributes (e.g., 

gender, race and ethnicity) as model predictors (see 2.6.2, Table 9). In agreement with recent 

empirical efforts suggesting that demographics should be excluded from prediction models 

because of its lack of actionability – characteristics that are neither malleable nor within the 

individual’s control (described in further detail in 2.6.1; Paquette et al., 2020; Bowers, 2021; 

Baker, 2023a) – there is a need to assess model fairness using demographics rather than 

incorporating it as a predictor. 

Lastly, there is not enough work done to interpret model findings that can be understood by 

a non-technical audience. As seen in Table 7 (in 2.5.1), studies that include a subset of relevant 

predictors associated with dropout generally rely on variable importance plots, which can be 

difficult to quantify for practitioners, policymakers, and stakeholders. This dissertation extends 

beyond traditional forms of model interpretation to simplify the interpretation of complex, 

statistical models often called “black box” models.  

3.2 Research questions 

This study investigates the following research questions to predict early exit from high school: 

1: How does the prediction accuracy of supervised learning algorithms to predict early 

exit from high school compare to that of traditional models (i.e., logistic regression)? 
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Additionally, how does model performance vary when resampling techniques are used to 

address class imbalance? 

2: To what extent do models provide fair predictions across sensitive student attributes 

such as gender, race/ethnicity, disability status, financial hardship, and English 

proficiency? 

3: What are the most salient predictors of students who exited high school in 9th or 

10th grade? 

 

3.3 Data  

I use administrative and longitudinal data from the Department of Public Instruction in North 

Carolina that are available through the North Carolina Education Research Data Center 

(NCERDC). The data include student-level data spanning 2011 to 2018 and grades 6 through 12.  

North Carolina's data do not include student home addresses or zip codes, so the most localized 

geographic information available is at the school level. To understand urbanicity, I incorporate 

data from the National Center for Education Statistics (NCES) Education Demographic and 

Geographic Estimates (EDGE), a publicly available source that provides data to understand the 

spatial and social context of education in the United States. It uses data from the U.S. Census 

Bureau’s American Survey to create school, district, and state level indicators of economic, 

housing, and social conditions for public schools. All NCES data are linked using school 

identifiers that align with school identifiers in most state longitudinal data systems. I merge 

EDGE data with NCERDC data by matching these school identifiers, which are consistent across 

both EDGE and NCERDC. 

3.4 Sample 

The analytic sample is first-time sixth-grade traditional public school students in North Carolina 

during the 2011-2012 school year. 94% of students in the population sample (n = 107,602) 

persist in the school system beyond 10th grade, compared to 6% who exited in either 9th or 10th 

grade. 
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3.4.1 Data decisions 

I restrict the sample based on four characteristics. First, students must have a graduation or exit 

record provided by NCERDC between 2014 and 2019. Second, students must not have repeated 

a middle grade, or a grade between 6th to 8th grade. Third, students must attend districts that 

follow a compulsory school age of 16.4 Fourth, students must have at least some attendance and 

state test score data from a middle grade to be included in the sample. This requires that students 

must have at least one year of attendance data and one year of test score data to be included in 

the sample.  

In cases where a student has missing data for one or two years in either attendance or test 

scores, I impute the missing values using the student's unique middle school median. A student’s 

unique middle school median is calculated by taking the student’s available data in each category 

(English language arts test scores, and math test scores), finding its median, and imputing 

missing values in that category with this median. For example, if a student did not have 6th grade 

attendance information and had attended 90 percent of total days enrolled in 7th grade and 94 

percent of total days enrolled in 8th grade, that student’s 6th grade attendance would be imputed 

using the median of their available attendance data, in this case, 92 percent. The described 

criteria are not dependent on the school or district that the student attended.5  

3.4.2 Training and testing sample  

This dissertation utilizes data from two different populations – a training cohort and a test cohort. 

This is to address the pervasive challenge of overfitting, which occurs when a model essentially 

 
4 SL2016-94 is a pilot program where four school districts in North Carolina raised the compulsory school age from 

16 to 18 beginning in the 2016-2017 school year. These four districts are excluded in this analysis. 

5 Mobility, or when students change schools during the school year, is described in detail in section 3.6.2.  
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"memorizes" the data it was given rather than learning generalizable patterns. This typically 

happens when the model relies too heavily on the training data, or the data that the model learns 

patterns, relationships from to make predictions. Extensive research has shown that cross-

validation is instrumental in enhancing a model's generalizability, or its ability to perform well 

on new, unseen data (Kuhn & Johnson, 2013; Kroese et al., 2019; Bishop, 2024).  

As described in 2.3.3, cross-validation is a technique that splits data into subsets, trains 

the model on some subsets, and evaluates the model on a subset that was not used for training. 

The test data – the subset of data that was not used for training – is used to assess how well the 

model generalizes to new data. I cross-validate models in this analysis by using data of 6th grade 

students in Fall 2010 as a training sample and 6th grade students in Fall 2011 as a test sample.  

A consequence of the decisions imposed on the sample (described earlier in 3.4.1) is that 

it reduces the sample sizes of both the training and test cohorts. By restricting the data to students 

with non-missing middle school records, I am unable to observe middle school engagement for a 

subset of students in both cohorts. Furthermore, the data decisions disproportionately reduce the 

number of observations of students who exited early. After imposing these data restrictions, the 

resulting sample sizes are as follows: the final train data have 89,716 observations, of which 

1,551 students (1.7 percent) exited in 9th or 10th grade and 88,165 students (98.3 percent) 

persisted beyond 10th grade. Similarly, the final test data have 95,077 observations, of which 

2,404 students (2.5 percent) exited early and 92,673 students (97.5 percent) persisted beyond 10th 

grade. 

To better understand the composition of students across both samples, I present 

characteristics of the training and test samples in Table 13. The table displays the proportion of 

the sample represented by each student attribute, along with its intersection with exit status, and 
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the corresponding standard deviation. For instance, a value of 0.441 for females who exited early 

in the training data indicates that 44.1 percent of all students who exited early in the train data 

were female. The reported characteristics are binary, meaning that students who do not identify 

in the same group are assumed to be the counterfactual. This enables the extension of this table 

to provide information such that, in the prior example, 55.9 percent of all students who exited 

early in the train data were male. The other race category are students who identified in one of 

the following categories: 2 or more races, American Indian or Alaskan Native, and Native 

Hawaiian or other Pacific Islander.6  

Table 13: Descriptive statistics for training and test sample 

  Exited early Did not exit early 

 
Train Test Train Test 

N 1,551  2,404 88,165 92,673 

Female 0.411 

(0.492) 

0.374 

(0.484) 

0.505 

(0.500) 

0.496 

(0.500) 

Asian 0.006 

(0.080) 

0.004 

(0.064) 

0.027 

(0.162) 

0.027 

(0.161) 

White 0.487 

(0.500) 

0.497 

(0.500) 

0.540 

(0.498) 

0.524 

(0.499) 

Black 0.296 

(0.457) 

0.260 

(0.439) 

0.264 

(0.441) 

0.263 

(0.440) 

Other race 0.082 

(0.274) 

0.042 

(0.200) 

0.054 

(0.227) 

0.041 

(0.198) 

Economically disadvantaged 0.787 

(0.409) 

0.794 

(0.405) 

0.446 

(0.497) 

0.469 

(0.499) 

Age 14.580 

(0.682) 

14.425 

(0.648) 

13.693 

(0.464) 

13.697 

(0.463) 

Had a disability 0.284 

(0.451) 

0.283 

(0.450) 

0.114 

(0.318) 

0.119 

(0.324) 

 
6 I do not report disaggregated characteristics for students in the “other race” category as these students reported in 

each of these categories make up less than 2 percent of the student population. 
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Had a disability in a middle grade 0.322 

(0.468) 

0.315 

(0.465) 

0.137 

(0.344) 

0.141 

(0.348) 

Limited English proficient 0.080 

(0.271) 

0.102 

(0.303) 

0.045 

(0.208) 

0.042 

(0.200) 

Limited English proficient in a middle grade 0.095 

(0.293) 

0.113 

(0.316) 

0.055 

(0.229) 

0.053 

(0.224) 

Notes: Standard deviations are reported in parentheses. Data are from students’ 8th grade records. Age is reported 

in years and captures a student’s age on October 17th of the year they are in 8th grade. Disability status is 

approximated with a student having an Individual Education Plan (IEP). Middle grades refer to grades 6 through 

8. Other race captures students who identified in one of the following categories: 2 or more races, American 

Indian or Alaskan Native, and Native Hawaiian or other Pacific Islander.  

Among the students who exited early, the training sample exhibits a slight 

overrepresentation of female, other race, and Black students. In contrast, the characteristics of 

students who did not exit early appear to be balanced between the training and testing sample. 

In examining the composition of students who exited early, there are some emerging 

patterns that are the same in both training and test sample. This table highlights that among 

students who exited early, just over half are White, more than three-fourths are economically 

disadvantaged (i.e. come from households that face financial hardship), approximately 60 

percent are male, and more than 25 percent had a disability. I cannot directly compare these 

proportions to national-level proportions of student exits as there is very limited nationwide 

reporting and understanding of students who drop out of high school. However, this evidence 

suggests that exited students from the 2017 and 2018 cohorts had an overrepresentation of 

vulnerable characteristics, such as being economically disadvantaged and having a disability.  

3.5 Measures 

3.5.1 Outcome 

The outcome of interest is high school exit in 9th or 10th grade. This binary outcome takes a value 

of “1” if a student exits in either 9th or 10th grade, and “0” if a student persists in school beyond 

10th grade. North Carolina monitors student exit and provides detailed records on when students 
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leave the school system.7 The tracking of students across the state system is facilitated by 

encrypted identifiers created and provided by the NCERDC. Each individual student is assigned 

a unique identifier that enables linking of student level data across schools, grades, and years. 

In this dissertation, I use the terms "dropout," "student withdrawal," or "early exit" to 

refer to a permanent discontinuation of schooling from the North Carolina public school system. 

This is distinct from "stopout," which refers to students who temporarily discontinue schooling. 

In this study, stop outs are students who drop out in 9th or 10th grade and return to school in a 

subsequent school year. To ensure that my outcome captures dropout and not stopouts, I cross-

check exit records from spring 2017, 2018, and 2019 records, flagging students as dropouts if 

they left school in 9th or 10th grade and did not return in later school years.8  

I refer to the students who exited early as the “positive” or “minority” class, as they 

represent both the affirmative outcome and make up less than half of the testing sample. 

Conversely, I refer to students who did not exit early as the “negative” or “majority” class. 

Although the goal of a prediction model is to forecast the likelihood of an event 

occurring, the model may rarely estimate probability outputs that are exactly 0 or exactly 1. For 

this reason, standard machine learning practices recommend the identification of a decision 

threshold, or probability cutoff for which a model classifies the probability into a class label 

(e.g., "exiting early" or "not exiting early") with a receiver operator characteristic (ROC) curve 

analysis (Kroese et al., 2019). The ROC curve essentially plots the tradeoff between true 

positives (proportion of correctly predicted for positive cases) and false positives (units for 

 
7 North Carolina records include an exit survey that students who withdrew from the school system are required to 

complete. The survey asks questions about the students’ decision to exit. The survey data are not examined in this 

analysis due to a high rate of missing responses. 
8 This analysis is unable to observe the trajectory of exited students, such as if they transferred or enrolled in a 

charter school or a private school. The implications of this are discussed in Chapter 5.1. 
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which the model incorrectly predicted the proportion of incorrectly predicted positive cases) at 

random classification thresholds (Streiner & Cairney, 2007; Bowers & Zhou, 2019). I map a 

ROC curve for each model to identify the optimal probability threshold at which a student with a 

predicted probability above this threshold will be classified as likely to exit early. 

3.5.2 Model features 

I use data on student engagement from grades 6 to 8 as predictors to flag students at risk of 

exiting early. These predictors – also known as model features – data include End-of Grade 

(EOG) test scores, attendance, disciplinary infractions, school mobility, and student 

characteristics. I follow prior research that recommends that a base set of indicators should 

include ABC – attendance, behavior, and course performance (Frazelle & Nagel, 2015; 

Allensworth & Easton, 2007; Balfanz et al., 2007; Mac Iver, 2010). I exclude gender, race and 

ethnicity as model features because these student attributes are not actionable and typically are 

not used as justification for why a student is classified at-risk or for why a student is eligible for 

intervention, supports, and services. Instead, I use gender and racial identification to assess 

whether the model provides equitable predictions a discussion that will be further explored in 

Section 3.7.  

It is important to note that none of the model features in this analysis are categorical in 

nature (e.g., represent more than two categories or non-numeric groups). This is because some of 

the analytical methods that I employ either 1) assume that features with numeric values have an 

inherent order or ranking of values, or 2) are not equipped to directly handle non-numeric 

features.  

Table 14 provides an overview of the model features that will be used for all models. 

This subsection provides a detailed description of how these features were created and organizes 
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them into four categories: student characteristics, attendance, academic performance, and 

discipline information.  

Table 14: Model features 

Group Variable Description 

Student 

characteristics 

(extracted from 

8th grade 

records) 

Financial hardship 1: Student is economically disadvantaged* 

0: Not economically disadvantaged 

Limited English Proficient 1: Student is Limited English Proficient (LEP) 

0: Not LEP 

Limited English Proficient in a 

middle grade 

1: Student was LEP in grades 6-8 

0: Not LEP in grades 6-8 

Age  Continuous value capturing age in October of 8th grade. 

Reported in years, rounded to the nearest tenth 

Disability status 1: Student has an Individualized Education Plan (IEP) 

0: No IEP  

Disability status in a middle 

grade  

1: Student had an IEP in grades 6-8 

0: No IEP in grades 6-8 

Urban 1: Attended a school in that locale 

0: Did not attend a school in that locale  Suburban 

 Town 

 Rural 

Attendance 

information 

6th grade absence  Total days absent divided by total days enrolled 

7th grade absence  

8th grade absence  

Chronic absence in 6th grade 1: Student is chronically absent - has missed 10% or 

more of total enrolled days 

0: Student is not chronically absent 

Chronic absence in 7th grade 

Chronic absence in 8th grade 

Chronic absence in all middle 

grades  

1: Student was chronically absent in all grades 6-8 

0: Student not chronically absent in all grades 6-8 

 Chronic absence in a middle 

grade 

1: Student was chronically absent in grades 6-8 

0: Student not chronically absent in grades 6-8 

 School mobility in 6th grade Number of times a student changed schools within the 

school year 
 School mobility in 7th grade 

 School mobility in 8th grade 
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 School mobility in middle grades Number of times a student changed schools within the 

school year in grades 6-8 

Academic 

information 

6th grade math proficiency 1: Student did not score proficient on grade-level EOG  

0: Student scored proficient or higher on grade-level 

End-of-Grade (EOG) test 

 

6th grade reading proficiency 

7th grade math proficiency 

7th grade reading proficiency 

8th grade math proficiency 

8th grade reading proficiency 

Math proficiency in middle 

grades  

1: Student was not proficient in all grades 6-8 EOG tests 

0: Student was proficient in at least 1 grade 6-8 EOG 

tests Reading proficiency in middle 

grades  

Discipline 

information 

6th grade ISS 1: Received in-school suspension (ISS)  

0: Did not receive ISS 

 

7th grade ISS 

8th grade ISS 

ISS in a middle grade 1: Received ISS in grades 6-8 

0: Never received ISS in grades 6-8 

6th grade OSS 1: Received out-of-school suspension (OSS)  

0: Did not receive OSS 

 

7th grade OSS 

8th grade OSS 

OSS in a middle grade 1: Received OSS in grades 6-8 

0: Never received ISS in grades 6-8 

Suspended in a middle grade 1: Received either OSS or ISS in grades 6-8 

0: Never received OSS or ISS in grades 6-8 

ST suspension in a middle grade 1: Received a short-term suspension in grades 6-8 

0: Never received a short-term suspension in grades 6-8 

LT suspension in a middle grade 1: Received a long-term suspension in grades 6-8 

0: Never received a long-term suspension in grades 6-8 

Notes: Gender, race/ethnicity, economic, and disability status are based on 8th grade student records.  

*North Carolina Department of Public Instruction (DPI) defines an economically disadvantaged student as a 

child meeting one or more of the following criteria: direct certification from food assistance programs (SNAP, 

TANF, FDPIR); runaway, homeless, foster, Medicaid recipient, enrolled in Head Start or state-funded pre-

kindergarten, or migrant status; and community eligibility provision (CEP).  

 

Student characteristic indicators  

Student characteristics include English proficiency status, disability status, age, and urbanicity at 

the school level. English proficiency and disability status are extracted from 8th grade records.  
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Using birth month and birth year provided by NCERDC, I follow Bowden et al. (2023) and 

calculate a student’s age based on the kindergarten entry cutoff date of October 17th. Given that 

the data do not provide full dates of birth, there may be a margin of error of up to one month in 

calculating the exact age.  

Urbanicity (i.e., urban, suburban, town, and rural) is measured at the school level using 

publicly available data from NCES Education Demographic and Geographic Estimates (EDGE) 

data. The indicator follows NCES classifications of locales into four categories: city, a territory 

inside an urbanized area and inside a principal city; suburban, a territory outside of a principal 

city and inside an urbanized area; town, a territory inside an urban cluster; and rural, a territory 

that is 2.5 or more or miles from an urban cluster or 5 or more miles away from an urbanized 

area. Additional information on locale classifications can be found in Giverdt (2017). Locale 

classifications were matched to the school that the student attended in 8th grade. For students that 

attended multiple schools in 8th grade, urbanicity was matched to the school in which the student 

was enrolled the longest. 

I follow North Carolina Department of Public Instruction (DPI)’s definition of economic 

disadvantage. A student is considered economically disadvantaged if they meet one or more of 

the following criteria: direct certification from food assistance programs (SNAP, TANF, 

FDPIR); runaway, homeless, foster, Medicaid recipient, enrolled in Head Start or state-funded 

pre-kindergarten, or migrant status; and community eligibility provision (NC DPI, 2018).9  

There are two indicators for limited English proficiency (LEP): being classified as LEP in 

8th grade or ever been classified as LEP in middle grades (between 6th through 8th grade). LEP 

 
9 The criteria for Economically disadvantaged Status (EDS) students are publicly available on the NC DPI website, 

eliminating concerns about data privacy on how EDS is defined.   
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students are those with limited abilities in speaking, writing, reading, or understanding English. 

This classification is equivalent to what other states refer to as English Language Learners 

(ELL). Under the Every Student Succeeds Act (ESSA), provisions are in place to offer 

supplemental services aimed at improving the English language proficiency and academic 

performance of LEP students (U.S. Department of Education, 2016). Eligibility for these services 

is determined through a standardized statewide annual language proficiency assessment, 

followed by additional entrance and exit procedures.  

Student disability is determined by the student having an Individualized Education Plan 

(IEP), also known as the Individualized Education Program. Students with an IEP receive special 

education, services, and support tailored to their needs. IEPs are mandated by the Individuals 

with Disabilities Education Act (IDEA), a special education law. Eligibility for IEP services 

requires identification and evaluation, which may vary across school systems and states. In this 

analysis, students who have an IEP in 8th grade are classified as having a disability. Similar to 

the LEP indicators, there are two indicators for student disability: having a disability in 8th grade 

or having ever had a disability in a middle grade. 

Attendance indicators 

Attendance is measured with three types of indicators: absence rate, incidence of chronic 

absenteeism, and school mobility. A student’s weighted absence rate is calculated by dividing 

the total number of absences across all schools attended in a grade by the total enrollment days 

for that grade. To minimize potential outliers or errors in administrative data, I restrict the 

analysis to students whose annual total enrollment days in the public school system is more than 

10 days but do not exceed 210 days.  
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The models include a binary indicator for being chronically absent in a specific middle 

grade (6th through 8th) and across all middle grades. This follows North Carolina Department of 

Public Instruction’s definition of being chronically absent as missing at least 10 percent of 

instructional days, regardless if the absence is excused (NC DPI, 2019).  

School mobility captures if a student changed school in a school year. Empirical evidence 

suggests that within-year school moves disrupt school experiences in ways that are associated 

with lower student achievement (Hanushek et al., 2004; Burkam et al., 2009; Welsh, 2017). For 

this reason, this indicator focuses on within-year mobility rather than between-year mobility. The 

indicators capture two pieces of information: the number of times a student has changed schools 

within a grade, and the number of within-year moves across 6th to 8th grade.  

Discipline indicators 

Student behavior is captured through four categories of disciplinary infraction data: out-of-

school suspensions (OSS), in-school suspensions (ISS), short-term (ST) suspensions, and long-

term (LT) suspensions. The North Carolina middle school discipline data do not include records 

of every student in the system; the data only include information on students who have received 

a disciplinary infraction. Therefore, this analysis assumes that a student with no discipline record 

has received neither an OSS nor an ISS.  

The OSS indicators examine whether a student received an OSS at each grade level, and 

whether the student has ever received an OSS in a middle grade. Similarly, there are 4 ISS 

indicators – whether a student received an ISS at each grade level, and whether the student has 

ever received an ISS in a middle grade.  
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The ST and LT suspension indicators examine if a student has received a ST or a LT 

suspension in a middle grade. This follows North Carolina’s definition that a short-term 

suspension as one that is 10 days or fewer, while a long-term suspension is at least 11 days.10 

The North Carolina middle school discipline data are not consistent across the years of 

analysis; some years lack information on the number of times a student was suspended or the 

reasons for suspension. Consequently, this analysis is unable to observe details of disciplinary 

infractions. 

Academic indicators 

I measure academic engagement using student performance in English language arts and math 

tests. NC’s End-of-Grade (EOG) tests are administered annually for students in grades 3 through 

8. EOG tests are scored on a scale of 1 to 5 where students receiving a score between levels 3 to 

5 indicate proficiency, while scores below 3 are considered below proficient (NC DPI, 2017).  

I transform proficiency scores into binary indicators that represent two forms of non-

proficiency: (1) when a student is not proficient in either math or English Language Arts in a 

specific grade, and (2) when a student fails to demonstrate proficiency in a subject across all 

middle school years. The latter indicator applies to students who were not proficient in a given 

subject throughout all three years of middle school.  

I do not include continuous measures of EOG tests for two reasons. First, even if the scores 

were standardized to a scale where they could be interpreted as units of standard deviation, such 

an interpretation would be difficult for school leaders and educators. These stakeholders 

typically focus on improving test performance, rather than on increasing standard deviations in 

 
10 NCERDC data do not include the length of a short-term or long-term suspension. This limits the ability to observe 

the length of suspension in this analysis. 
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test scores. Second, using raw test scores as a continuous measure would complicate the 

interpretation of small changes in performance, as these changes may not correspond to a 

meaningful shift in the number of correct answers on the exam. North Carolina’s middle school 

data do not include report card level transcript information. Thus, I am unable to examine 

coursework performance or the types of courses taken in grades 6 through 8.11 

3.5.3 Descriptive statistics of test sample 

This subsection examines how model features vary by exit status. Specifically, I analyze the 

mean and distribution of each model feature for the testing sample provided in Table 15.  

Compared to students who persisted in high school beyond 10th grade, students who exited 

early were more likely to be economically disadvantaged, be older, have an IEP, be Limited 

English Proficient, not meet grade-level proficiency in reading or math, have higher absence 

rates, be chronically absent, and receive some form of school suspension. This aligns with the 

risk indicators highlighted in prior empirical work (Allensworth & Easton, 2007; Balfanz et al., 

2014; Allensworth et al., 2014) . However, there are no observable differences by exit status with 

regards to school mobility and school-level urbanicity.  

Table 15: Descriptive statistics of model features for test sample 

 Outcome  

 Did not exit early Exited early Total 

N 92,673 (97.5%) 2,404 (2.5%) 95,077 (100.0%) 

Student characteristics    

Economically disadvantaged 0.469 (0.499) 0.794 (0.405) 0.478 (0.499) 

Age 13.697 (0.463) 14.425 (0.648) 13.716 (0.482) 

IEP 0.119 (0.324) 0.283 (0.450) 0.123 (0.328) 

Ever had an IEP in a middle grade 0.141 (0.348) 0.315 (0.465) 0.145 (0.352) 

Limited English proficient 0.042 (0.200) 0.102 (0.303) 0.043 (0.203) 

 
11 This analysis is unable to examine or approximate course offerings in middle grades. There is no centralized 

oversight of course offerings statewide, as middle school course selection is provided and managed at the county 

level.  
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Ever limited English proficient in 8th 

grade 0.053 (0.224) 0.113 (0.316) 0.055 (0.227) 

Urban 0.282 (0.450) 0.295 (0.456) 0.283 (0.450) 

Suburban 0.155 (0.362) 0.147 (0.354) 0.155 (0.362) 

Town 0.120 (0.325) 0.114 (0.317) 0.120 (0.325) 

Rural 0.443 (0.497) 0.445 (0.497) 0.443 (0.497) 

Academic information    

Not proficient in 6th grade math 0.161 (0.368) 0.465 (0.499) 0.169 (0.375) 

Not proficient in 7th grade math 0.575 (0.494) 0.889 (0.314) 0.583 (0.493) 

Not proficient in 8th grade math 0.547 (0.498) 0.895 (0.306) 0.555 (0.497) 

Not proficient in all middle grade math 0.155 (0.362) 0.430 (0.495) 0.162 (0.368) 

Not proficient in 6th grade reading 0.217 (0.412) 0.511 (0.500) 0.224 (0.417) 

Not proficient in 7th grade reading 0.490 (0.500) 0.800 (0.400) 0.497 (0.500) 

Not proficient in 8th grade reading 0.428 (0.495) 0.727 (0.446) 0.435 (0.496) 

Not proficient in all middle grade reading 0.193 (0.394) 0.417 (0.493) 0.198 (0.399) 

Attendance information    

Absence rate in 6th grade 0.034 (0.040) 0.094 (0.092) 0.036 (0.043) 

Absence rate in 7th grade 0.040 (0.044) 0.110 (0.101) 0.042 (0.048) 

Absence rate in 8th grade 0.037 (0.039) 0.105 (0.102) 0.039 (0.043) 

Chronically absent in 6th grade 0.047 (0.211) 0.255 (0.436) 0.052 (0.222) 

Chronically absent in 7th grade 0.066 (0.248) 0.353 (0.478) 0.073 (0.260) 

Chronically absent in 8th grade 0.012 (0.108) 0.078 (0.269) 0.013 (0.115) 

Ever chronically absent in a middle grade 0.102 (0.303) 0.494 (0.500) 0.112 (0.316) 

Chronically absent in all middle grades 0.001 (0.032) 0.016 (0.125) 0.001 (0.038) 

School mobility in 6th grade 0.006 (0.075) 0.017 (0.128) 0.006 (0.077) 

School mobility in 7th grade 0.013 (0.112) 0.057 (0.232) 0.014 (0.117) 

School mobility in 8th grade 0.000 (0.003) 0.000 (0.000) 0.000 (0.003) 

School mobility in all middle grades 0.185 (0.418) 0.350 (0.577) 0.189 (0.423) 

Discipline information    

OSS in 6th grade 0.084 (0.277) 0.334 (0.472) 0.090 (0.287) 

OSS in 7th grade 0.101 (0.301) 0.400 (0.490) 0.108 (0.311) 

OSS in 8th grade 0.087 (0.281) 0.391 (0.488) 0.094 (0.292) 

OSS in a middle grade 0.185 (0.388) 0.611 (0.488) 0.195 (0.397) 

ISS in 6th grade 0.115 (0.319) 0.342 (0.474) 0.121 (0.326) 

ISS in 7th grade 0.132 (0.339) 0.395 (0.489) 0.139 (0.346) 

ISS in 8th grade 0.105 (0.306) 0.334 (0.472) 0.111 (0.314) 

ISS in a middle grade 0.194 (0.395) 0.492 (0.500) 0.201 (0.401) 

Ever suspended in a middle grade 0.291 (0.454) 0.730 (0.444) 0.302 (0.459) 

Notes: In the first row, N indicates the sample size and proportion of the test data represented by the subgroup. 

Standard errors are reported in other parentheses. Student characteristics are extracted from 8 th grade records. 

Detailed information about each indicator can be found in 3.5.2. 
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3.6 Empirical strategy for research question 1 

The first question examines the following: 1) how the prediction accuracy of supervised learning 

algorithms to predict high school exit compares to that of traditional approaches, and 2) how 

model performance may vary when the model includes resampling techniques to address class 

imbalance. This question builds, optimizes, and evaluates the prediction accuracy of fifteen 

prediction models. 

To answer these questions, I follow four key steps discussed in this section. 3.6.1 focuses 

on selecting five supervised learning algorithms that use middle school engagement data to 

predict whether a student will exit school in 9th or 10th grade. The second step, described in 3.6.2, 

follows field norms to identify a decision threshold to set a minimum predicted score that will 

classify a student as likely to exit early. This step also includes the parameters and strategies 

used to optimize model performance. Step 3.6.3 discusses statistical techniques to handle class 

imbalance, where the data contains significantly more instances of one outcome (e.g., persisting 

beyond 10th grade) than the other (e.g., early exit). The final step, 3.6.4, evaluates the 

performance of all models, comparing those trained on balanced data with those trained on 

imbalanced data. 

3.6.1 Supervised algorithms 

Supervised algorithms are a class of machine learning methods where the outcome is known 

(often referred to as class “labels”) and models are trained on data that include class labels. 

These algorithms learn from the patterns in the relationships in the training data. Once a model is 

trained it can make predictions on unseen data that was not used during the training process, also 

known as test data. 
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 I follow the approach seen in earlier dropout prediction studies where the prediction 

accuracy of a logistic regression model is compared to that of more advanced supervised 

algorithms. This dissertation treats the logistic regression as a baseline model and compares its 

performance to models that use lasso regression, ridge regression, random forest, and extreme 

gradient boosting (XGboost). The remainder of 3.6.1 describes each of the five supervised 

learning algorithms.  

Logistic regression 

A logistic regression estimates the likelihood of a binary outcome using the maximum likelihood 

estimation (MLE) framework. A key feature of the logistic regression approach is its residual 

sum of squares (RSS), which quantifies the model's error (Kuhn & Johnson, 2013). The RSS is 

represented by the following formulation: 

𝑅𝑆𝑆 =  ∑(𝑌𝑖 − 𝑌�̂�)
2 

𝑛

𝑖=1

 

where observation i’s difference between actual values 𝑌𝑖 and predicted values 𝑌�̂� are squared and 

summed across n observations. A smaller RSS indicates lower variance, which is associated with 

better model fit (James et al., 2023). Understanding (RSS) is crucial, as it optimizes model 

parameters. The second and third algorithm used in this analysis depend on RSS in its objective 

function (i.e., model specification). Thus, a comprehensive understanding of how RSS functions 

is essential for interpreting model performance. 

Regularized regressions 

Regularized regressions, often known as shrinkage methods, are regression methods that prevent 

overfitting by adding a penalty term to the RSS function. Regularized regressions diverge from 

the standard regression approach by shrinking the coefficients towards zero, which can improve 
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the model’s ability to generalize to unseen or new data. This dissertation applies two types of 

regularized regression: lasso regression and ridge regression. Both methods follow similar 

formulations – it applies a tuning parameter, λ, to create a penalty term that is added in the RSS 

function. The regressions vary in how the penalty term is calculated. 

Ridge regressions, also known as L2 regularizations, add a squared magnitude penalty 

term to the loss function (Tibshirani, 1996; Hastie et al., 2015;  James et al., 2023). Building on 

the use of RSS to evaluate model linear fit, the L2 penalty term is added to the end of the RSS 

function with the following formulation: 

𝑅𝑆𝑆𝐿2  =  𝑅𝑆𝑆 + λ ∑ 𝐵𝑗
2

𝑃

𝑗=1

 

where lambda (λ) controls the sum of squared regression coefficients across p predictors. It is 

important to note that ridge regressions include all predictors in the final model and will not set 

any of them to exactly zero (unless λ is infinite). The smaller λ is, the closer the function 

resembles a logistic regression model.  

Least absolute shrinkage and selection operator (lasso) regressions, or L1 regularizations, 

add an absolute value of magnitude penalty term. Its RSS function is denoted by: 

𝑅𝑆𝑆𝐿1  =  𝑅𝑆𝑆 + λ ∑ |𝐵𝑗|

𝑃

𝑗=1

 

Lasso regressions can force coefficient estimates to be exactly zero when  λ is sufficiently large, 

forming a parsimonious model (Kroese et al., 2019; Friedman et al., 2023).  

Random forest 

The fourth supervised approach is random forest. This approach creates a collection (or “forest”) 

of multiple models with random subsets of data, hence the name “random forest.” Random forest 
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is a tree-based method, so its models are an aggregate of decision trees. As described in 2.4.4, 

decision trees follow a tree-like structure to ask “if-then” structured questions about model 

features to split the data into smaller groups based on different features. Random forest has three 

key features to arrive at a final prediction: bagging, feature randomness, and majority voting. 

First, it uses bagging (bootstrap aggregation) to create a diverse set of decision trees. 

Bagging involves drawing random subsets of the training data with replacement, and each tree is 

independently trained on a different subset. The second attribute is feature randomness, where 

each tree randomly selects a subset of features (predictors) at each split, reducing correlation 

between trees. The third feature is its use of voting to make final predictions. Each tree casts a 

'vote' for the predicted outcome for an instance i and the outcome with the most (majority) vote 

across all the decision trees determines the final prediction for i (Breiman, 2001; Hastie et al., 

2009a, 2009b; Cutler et al., 2012).  

XGboost 

XGboost, short for extreme gradient boosting, is another tree-based method that follows a 

sequential process of building trees that penalizes incorrect predictions. The core of this method 

relies on a gradient boosting algorithm. I first describe gradient boosting and then introduce a 

new technique that makes it “extreme.” 

Gradient boosting offers an improvement to bagging by which builds one tree at a time 

and assigns higher weights to incorrect predictions (often called “weak learners”) from earlier 

models. The algorithm aggregates the residual errors – the difference between actual values 𝑌𝑖 

and predicted values 𝑌�̂� – to score each model with a loss function, θ. As explained in 2.4.4, θ 

guides how the model will adjust its parameters to improve accuracy.  
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The technique that makes gradient boosting “extreme” is the addition of a regularization 

term. This is the same regularization or penalty term that is added to regularized regressions, 

lasso and ridge regressions. XGboost’s objective function follows the specification: 

𝑜𝑏𝑗(𝜃)  =  ∑ 𝑙(𝑌𝑖 − 𝑌�̂�) + ∑ 𝜆(𝐹𝑘)

𝐾

𝑘=1

 

𝑛

𝑖

 

where 𝑙(𝑌𝑖 − 𝑌�̂�) represents the loss function and 𝜆(𝐹𝑘) is a regularization term for K number of 

decision trees. The goal of this function is to minimize this “loss” to achieve more accurate 

predictions (Chen & Guestrin, 2016). The final prediction for instance i is a weighted sum of all 

tree predictions.   

3.6.2 Optimizing model performance 

This subsection outlines two techniques employed in this analysis to ensure that each model is 

performing at a desired performance level. It is important to emphasize that the techniques 

discussed in this subsection – hyperparameter tuning and the identification of an optimal 

decision threshold – are applied during the training phase of model development. This process 

typically involves initially running a model with training data using default parameters, followed 

by iterative adjustments to the model parameters. These techniques, once applied, increase the 

likelihood that the model will generate precise predictions for new, unseen data.  

Tuning hyperparameters 

Hyperparameter tuning is an approach to optimize machine models by imposing 

parameters or specifications to improve model behavior, learning, and performance. 

Hyperparameters typically need to be manually tuned or specified. In cases where the model is 

not assigned or specified with hyperparameters, models are tuned on default settings built into 
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the statistical command, package, or library.12 There is a broad range of hyperparameters that can 

be applied to machine learning models. For instance, in tree-based methods like random forest 

and XGboost, one can specify the number of features to consider when determining the best split 

of the training data, using the built-in hyperparameter max_features. This can help control model 

complexity and improve generalization by limiting the number of features evaluated at each 

decision point.  

There are several approaches to tune hyperparameters. This can be a manual search that 

involves trial and error or a grid search that automates the search process to identify a 

hyperparameters that meet a manually specified level of prediction error. While the manual 

search approach can be time-consuming and inefficient, grid search offers a more structured and 

systematic approach, ensuring a more comprehensive exploration of the hyperparameter space. 

For this reason, I opt to use grid search to identify a combination of hyperparameters to optimize 

the performances of the random forest and XGboost models. 

I rely on a slightly varied grid search to identify a level of regularization for regularized 

regressions (i.e. lasso and ridge regression). I follow standard practices to identify the optimal λ 

in both regressions using k-fold cross-validation. This strategy involves the following steps: 

choosing k folds; splitting the data into k equal sets with the 
1

𝑘
 of the data serves as test data and 

the remainder as train data; calculating the mean squared error (MSE) within each fold for each 

λ; calculating the overall cross-validation MSE for each λ; and plotting cross-validation MSE for 

each λ to identify the minimum cross-validation λ (Tibshirani & Friedman, 2001; Hastie et al., 

2009a; 2009b; Friedman et al., 2023). 

 
12 Commands, packages, and libraries refer to features in statistical programming languages (R, Stata, Python, etc.) 

to initiate actions or perform specific tasks. 
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Decision threshold 

Decision threshold refers to the cut-off score at which a model assigns an outcome (often 

referred to as class) to each prediction. Binary classification models generate a predicted 

probability score ranging from 0 to 1 for each observation. In this analysis, this predicted 

probability score indicates the likelihood that a student exited in either 9th or 10th grade. 

However, to assign class labels, the model requires a decision threshold – a specified probability 

value that determines whether a student is classified as 'exited early' or 'did not exit early.'  For 

instance, a model with a decision threshold of 0.7 will classify all predictions with a probability 

score of 0.7 or higher with an 'exited early' label, while scores below 0.7 would be classified 

otherwise. The decision threshold is a hyperparameter in that models do not internally select a 

threshold; it must be manually specified. In data science, the standard approach to identify a 

decision threshold is through the analysis of the Receiver Operating Characteristic (ROC) curve 

(Swets, 1988; Swets et al., 2000; Streiner & Cairney, 2007). 

 A ROC curve is a visual representation that shows the model’s ability to distinguish 

between classes. It displays the trade-off between the true positive rate (TPR) and false positive 

rate (FPR). In this analysis, positive class refers to students actually exited early, while the 

negative class refers to students who did not exit early. The TPR is the model’s ability to 

correctly identify true positives and is calculated as the proportion of predicted true positives 

(i.e., students who were correctly labeled ‘early exit’) over all true positives (i.e., all students 

who exited early). On the other hand, the FPR measures when a model misclassifies a negative 

class as a positive class. It is calculated as the proportion of false positive (i.e., students who 

were incorrectly labeled ‘early exit’) over true negatives, or students who did not exit early. 
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Often referred to as the false alarm, the FPR signals the cost of misclassifications (Bowers & 

Zhou, 2019; Nakas et al., 2023). 

 Selecting a decision threshold is a critical decision that has consequences on model 

performance. For instance, increasing the threshold (e.g., from 0.3 to 0.8) makes the model more 

stringent as fewer instances can be labeled in the positive class. This approach reduces the TPR 

as the model would misclassify more instances in the positive class that have lower scores, but at 

the same time this reduces the FPR, which is arguably good for preventing misclassification of 

negative instances. Conversely, lowering the threshold (e.g., from 0.8 to 0.3) would increase the 

TPR at the sacrifice of increasing the FPR. Although a combination of high TPR and low FPR 

are ideal, there is no standardized practice on how to select a threshold. The chosen threshold 

may depend on which metric is the most important to the specific setting.  

3.6.3 Class imbalance 

In classification methods, the classes (i.e., outcomes) are imbalanced when the data have many 

more instances of one outcome (the majority class) compared to another outcome (the minority 

class). Class imbalance is a challenge in prediction model development. During the learning 

phase – when the model is learning and building associations from training data – models tend to 

prioritize correctly predicting the majority class. This is often at the expense of incorrectly 

predicting outcomes for the minority class (He & Garcia, 2009; Krawczyk, 2016; Fernández et 

al., 2018). This issue is common in dropout prediction and is evidenced in this analysis, where 

the training data outcomes follow a 98:2 ratio. This means that for every 98 students who 

continue beyond 10th grade, only 2 students drop out in either 9th or 10th grade. I address class 

imbalance with two techniques: undersampling and oversampling. 

Oversampling 
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The first approach to balance classes is increasing, or oversampling instances in the 

minority class. I do this with Synthetic Minority Oversampling Technique (SMOTE), a 

technique that generates synthetic (i.e., artificial) minority class observations based on the k-

nearest neighbor for the minority class (Chawla et al. 2002; Anis & Ali, 2017; Fernandes et al. 

2018). This synthetic data generation process continues until the number of minority instances in 

the training data matches that of majority instances. The test data do not need to be resampled 

since the test data is not used for learning which features are predictive of early exit. Rather, the 

test data is used at the final stage of model development to assess model accuracy. 

There are several packages and variations of SMOTE available across different 

programming languages. I utilize the "smotefamily" package in R developed by Siriseriwan 

(2024) to generate synthetic instances. This package is an ensemble of various SMOTE 

techniques that have been introduced to the data science community over the past two decades. 

Among the different SMOTE variations, I apply safe-level-SMOTE, proposed by 

Bunkhumpornpat and authors (2009).   

Safe-level-SMOTE aims to improve the general SMOTE method (Chawla et al., 2002) by 

first assigning a safe level, or weight degree, to each minority stance. The safe level is the 

number of minority instances in k-nearest neighbors. A safe level close to k indicates that the 

instance is “safe”, whereas a safe level closer to 0 indicates that the instance is noisy. After 

assigning a safe level, synthetic instances are positioned around safe regions. Compared to 

general SMOTE, safe-level-SMOTE ensures that synthetic instances do not overlap with 

majority instances, ultimately leading to improved model performance (Bunkhumpornpat et al., 

2009). This synthetic data generation process is used to balance the training data of first-time 6th 
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grade students in the 2010-2011 school year. The SMOTE training data consist of 175,021 

instances, where 50.4 percent of instances did not exit early and 49.6 percent exited early. 

After applying Safe-level-SMOTE to oversample train data, I find that the synthetic 

minority sample closely mirrors the original minority sample on all characteristics except school 

mobility. Appendix Table A1 compares minority instances in the training data both before and 

after applying SMOTE, focusing on demographic characteristics (that are not used in model 

predictions) and model features (that serve as predictors in the models). 

Undersampling 

The second approach to address class imbalance is by reducing instances of the majority class, or 

students who did not exit early. I do this with an undersampling technique proposed by Menardi 

& Torelli (2014) that randomly undersamples instances of the majority class without 

replacement.13  

I utilize the “ROSE” package in R developed by Lunardon et al. (2014) to randomly drop 

a subsample of the majority class from the training data. The downsized training data have 3,102 

observations with an equal number of class instances. 

After undersampling the training data, I find that the downsized majority sample closely 

resembles the original majority sample. Appendix Table A2 presents descriptive statistics of the 

majority class before and after undersampling. Similar to the synthetic training data built via 

oversampling, I find that the reduced and original majority samples are comparable across all 

demographics and model features, except for school mobility. 

 
13 I am unable to apply undersampling approaches that follow mathematical formulas (such as Near Miss, 

Condensed Nearest Neighbors (CNN), and Tomek Links), the software packages for these techniques are no longer 

accessible on the Comprehensive R Archive Network (CRAN). 
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3.6.4 Evaluating model performance  

I evaluate the performance of fifteen models, each constructed using one of five supervised 

learning algorithms. These models are trained using one of the following data: highly imbalanced 

original training data, balanced training data that incorporates synthetic instances of the minority 

class, or balanced training data with reduced instances of the majority class. Table 16 provides a 

breakdown of the models by its training data and algorithm. All the models employ cross-

validation where each model is trained on the training data (i.e., 6th grade students in fall 2010) 

and evaluated on a separate test data (i.e., 6th grade students in fall 2011). I assess model 

performance by examining how well the trained models make predictions on test data. The 

remainder of this dissertation categorizes and refers to these models by their respective panel. 

Models are assigned to a panel on the type of training data used in the learning phase. Panel A 

encompasses models developed with highly imbalanced original training data; Panel B includes 

models where the data were balanced through oversampling; and Panel C focuses on models 

with balanced training data achieved with downsampling. 
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Table 16: Prediction model overview 

Training data Algorithm Outcome: early exit  

Panel A: 

Highly 

imbalanced 

(98:2) 

Logistic regression  

 

 

 

1: Student dropped out of high 

school in 9th or 10th grade 

 

 

 

 

0: Student completed 10th 

grade or more 

Lasso regression 

Ridge regression 

Random forest 

Extreme gradient boosting (XGboost) 

 

Panel B: 

Balanced with 

oversampling 

of minority 

class (1:1) 

 

SMOTE Logistic Regression  

SMOTE Lasso Regression  

SMOTE Ridge Regression  

SMOTE Random Forest  

SMOTE Extreme Gradient Boosting (XGboost)  

Panel C: 

Balanced with 

undersampling 

of majority 

class (1:1) 

 

US Logistic Regression  

US Lasso Regression  

US Ridge Regression  

US Random Forest  

US Extreme Gradient Boosting (XGboost)  

Notes: The outcome, early exit, is consistent across all 15 models. SMOTE stands for Synthetic Minority 

Oversampling Technique and refers to training data that include synthetic instances of the minority class. US 

stands for undersampling and refers to training data that reduce instances of the majority class. 

An intuitive approach to evaluating model performance is to compare the predicted 

outcomes (i.e., the model’s predictions) with the actual, observed outcomes. This is analogous to 

the standard metric of model performance, the accuracy rate. The accuracy rate is computed as 

the proportion of instances in the test data that the model correctly classified (Hung et al., 2017; 

James et al., 2023; Bishop, 2024). A key limitation of the accuracy rate is that it does not provide 

insight into how well the model performs for each class label. Specifically, it fails to reveal the 

model's effectiveness in classifying both the positive and negative classes. To address this, I 

extract additional metrics from the confusion matrix.  
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I use the example confusion matrix provided in Table 16 to illustrate the process of 

calculating multiple performance metrics. A confusion matrix is a table that compares predicted 

and true labels for each class. Because this analysis uses a binary classifier, the comparison of 

predicted labels (i.e., predicted outcomes) with true (i.e., observed) labels is depicted by a 2 by 2 

matrix. The outcome of interest is if a student exited high school in 9th or 10th grade, where 

instances who exited early form the positive class, and instances otherwise form the negative 

class. The example matrix compares predicted labels and true labels for 1,000 instances (n = 

1,000). The matrix disaggregates instances into four key groups - true negatives (900), true 

positives (50), false negatives (40), and false positives (50).  

Table 17: Example confusion matrix 

  TRUE LABELS 

  Exited early Did not exit early 

PREDICTED 

LABELS 

Exited early 10 50 

Did not exit early 40 900 

Notes: This table is built for a binary outcome where a student who drops out of high school in 

9th or 10th grade is labeled “early exit” and “did not exit early.” 

The formulas for the accuracy rate and other performance metrics were previously 

described in Table 5. In this example, the accuracy rate is 91 percent (100 ∗
900+10

(900+10+40+50)
). 

The true positive rate, also known as sensitivity, is 20 percent (100 ∗
10

(10+40)
 ). The true negative 

rate, or specificity, is approximately 95 percent (100 ∗
900

(900+50)
). The precision is 17 percent 

(100 ∗
10

(10+50)
). 

This example highlights the importance of evaluating additional metrics beyond the 

accuracy rate. Although the model achieves a relatively high accuracy of 91 percent, its 
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sensitivity is notably low at 20 percent. This indicates that the model correctly identifies only 20 

percent of the positive instances, or students who exited early. 

The analysis findings will focus on sensitivity. Models with low sensitivity are 

susceptible to misidentifying the target population (students who withdraw), therefore reducing 

model validity. Conversely, students under false positive counts are less of a concern for 

stakeholders. The overidentification of students who exit early can still be beneficial for students 

who marginally persist in school longer, as these students may still benefit from additional 

interventions and support.  

The final metric to evaluate model performance is the AUC score, which captures the 

area under the ROC curve (see 3.6.2 for additional information about the ROC curve). AUC 

scores can range from 0 to 1; an AUC score of 0.5 indicates that the model is guessing close to 

random and a score of 1 indicates perfect model performance. The AUC is interpreted as the 

probability that the model will provide a higher output for a randomly chosen student who exits 

early compared to a randomly chosen student who does not exit early (Kroese et al., 2019; 

Nahm, 202l). For instance, an AUC value of 0.33 indicates that there is a 33 percent probability 

that the model will correctly identify a student who exits early. I follow the approach of Bowers 

& Zhou (2019) and apply the Wilcoxon rank sum test to test if AUC values in a panel are 

statistically significant from that in other panels. 

3.7 Empirical strategy for research question 2  

The goal of the second research question is to assess whether the fifteen models yield fair 

predictions for students from marginalized backgrounds, also known as protected attributes. As 

discussed in 2.6, 2.7 and 3.1, it is essential to ensure that algorithmic decisions are not 

perpetuating potential biases present in the data itself. I examine the accuracy of model 



 

90 

predictions for students grouped by following protected attributes: gender, race and ethnicity, 

English learner status, disability status, and economic disadvantage. Data on these protected 

attributes are extracted from students’ 8th grade records provided by NCERDC. I evaluate 

algorithmic fairness with two criteria: Absolute Between-ROC Area (ABROCA) metric and 

equalized odds metric. 

3.7.1 ABROCA slicing analysis 

The ABROCA slicing analysis developed by Gardner et al. (2019) detects differential accuracy 

between student subgroups for a protected attribute. This method proposes “slicing” the data into 

multiple subgroups and evaluating model performance across these subgroups. The data should 

be categorized where for every protected attribute, there exists a baseline (or majority) group b, 

and a comparison (or minority) group c. For example, to evaluate algorithmic fairness on 

disability status, the data should be partitioned in such a way that the baseline group are 

individuals that do not have an identified disability, and the comparison group are individuals 

with an identified disability.  

The metric is calculated by taking the absolute value of the difference in area between the 

ROC curve of the baseline group, ROCb, and the ROC curve of the comparison group, ROCb. 

The metric is not threshold dependent and captures the divergence in performance across all 

possible thresholds, t. A lower ABROCA value indicates a smaller difference in predictions, 

suggesting that there is less unfairness in the model. The ABROCA statistic is formally defined 

by the following formula: 

∫ | ROC𝑏(t) − 𝑅𝑂𝐶𝑐(𝑡)|𝑑𝑡
1

0
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I follow a systematic approach for calculating the ABROCA statistic. First, I segment the 

data into subgroups based on protected attributes, designating the first group as the comparison 

group and the second group as the baseline group. These attributes include gender (female and 

male), disability status (having an IEP and not having an IEP), English learner status (Limited 

English Proficient and not Limited English Proficient), financial hardship (economically 

disadvantaged and not economically disadvantaged), and race or ethnicity (non-White and 

White). It is important to note that these subgroups are not mutually exclusive; a student’s 

classification in a baseline or comparison group of an attribute does not influence their 

classification in any other attribute. Next, I assess model performance for each subgroup by 

computing their respective ROC curves. Last, I calculate the difference between the subgroups 

for an attribute by subtracting their respective ROC curves. The ABROCA value is then derived 

for each attribute A across all fifteen supervised learning models developed in the first research 

question. Each model will have one ABROCA statistic per attribute. Given that there are 5 

protected attributes, this analysis will present in a total of 75 ABROCA statistics.  

I rely on several statistical tests to determine if the ABROCA values are statistically 

significant. I follow the approach of Gardner et al. (2019) and perform a Kruskal-Wallis test, a 

non-parametric test used to assess whether there are significant differences between two or more 

independent groups. The Kruskal-Wallis test is an omnibus test, meaning it can indicate that at 

least two values are different, but it cannot specify which values differ from one another (Okoye, 

& Hosseini, 2024). I use this test to compare all ABROCA values in one attribute. For instance, 

one Kruskal-Wallis test will compare all 15 ABROCA statistics across the gender attribute, 

while another test will assess the same statistics grouped in the disability attribute, and so on for 

each relevant attribute. When the Kruskal-Wallis test rejects the null hypothesis that the 
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ABROCA statistics are the same for an attribute, I will follow the approach of Xu et al. (2024) 

and perform a Wilcoxon signed-rank test. The Wilcoxon signed-rank test will be used to 

compare ABROCA values within the same attribute and compare whether the ABROCA value 

differs against zero. 

3.7.2 Equalized odds metric 

The second approach to evaluate algorithmic fairness is by computing the equalized odds metric. 

Hardt et al. (2016)’s seminal work argues that equalized odds are achieved when both the true 

positive rate and false positive rate are equal among the baseline and comparison groups of 

attribute A, Ab and Ac. This criterion is formally satisfied by when: 

𝑃 {�̂� = 1 |𝐴 = 𝐴𝑐 , 𝑌 = 1} =  𝑃 {�̂� = 1 |𝐴 = 𝐴𝑏 , 𝑌 = 1}      (1) 

𝑃{�̂� = 1 |𝐴 = 𝐴𝑐 , 𝑌 = 0} =  𝑃 {�̂� = 1 |𝐴 = 𝐴𝑏 , 𝑌 = 0}       (2) 

where the first condition is that the predicted true positive rate is equal across both groups pf 

protected attribute A, and the second condition is the same but for the false positive rate (Hardt et 

al., 2016; Dunkelau, J., & Duong, 2022). Equalized odds relies on a fixed tolerance, meaning 

that it is dependent on the decision threshold. To ensure that this specification is not dependent 

on one threshold, I compute equalized odds metrics for the two models that apply a different 

decision threshold.  

To calculate the equalized odds criterion, I first calculate the sensitivity (i.e., true positive 

rate) for every Ab and Ac in attribute A. To  compare the sensitivity for each subgroup, I create a 

sensitivity equalized odds ratio that is the quotient of  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑏

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐
 . I repeat this process to 

calculate the false alarm (i.e., false positive rates) and arrive at the false alarm equalized odds 

ratio.  
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3.8 Empirical strategy for research question 3  

The third research question interprets model findings to understand which aspects of middle 

school engagement are associated with early exit. To achieve this, I rely on post-hoc 

explainability techniques to analyze and interpret the decision-making process of machine 

learning models. These post-hoc methods differ depending on the algorithm utilized. For 

regression models (such as those employing logistic, lasso, or ridge regression), I interpret the 

coefficients produced by the models. For tree-based models (random forest and XGBoost), I 

present visual representations of key model features with feature importance plots and SHAP 

plots. 

This question utilizes post-hoc explainability methods to interpret model findings. Rather 

than focusing on a single model, I include findings from all undersampled models to examine 

overlap in features that are predictive of early exit. Next, I take one of the undersampled models 

– the XGboost model – and use additional approaches to interpret what features are predictive of 

early exit. Specifically, I use a feature importance plot with gain values and a Shapley Additive 

exPlanations (SHAP) beeswarm plot.  

3.8.1 Interpreting regression models 

For models that were built using logistic regression, I rely on Wald (z) confidence intervals of 

and z-tests to determine if a coefficient statistically differs from zero. It is important to note that 

the objective functions of regularized regressions – lasso and ridge regressions – include a 

penalty term to shrink coefficients toward zero. As such, regularized regressions do not provide 

Wald confidence intervals or z-tests. In the case of lasso regression, some coefficients are shrunk 

precisely to zero, resulting in a sparse model that includes only non-zero coefficients (Hastie et 

al., 2009a; 2009b). Therefore, for models that use lasso regression, I extract all predictors with 
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non-zero coefficients and rank them according to their magnitude. In ridge regression, the 

penalty term reduces coefficients toward zero but does not shrink them to exactly zero. 

Consequently, for models that use ridge regression, I extract predictors with coefficients 

exceeding a value of 0.05 and rank them based on their magnitude. 

3.8.2 Interpreting tree-based models 

For tree-based models, I follow standards of quality and create a feature importance plot 

that ranks features by the extent to which that feature was used to optimize accurate predictions 

(Cutler et al., 2012; Khan et al., 2024). The feature importance for random forest models is 

computed with the percent increase in node purity. Node purity captures the reduction in sum of 

squared errors when a feature is chosen to split.14 For XGboost models, the feature importance 

plot ranks features by its gain. The gain metric is calculated by averaging each feature's 

contribution across all trees in the model and is interpreted as the proportion of accurate 

predictions influenced by that feature. For example, a Gain value of 0.2 indicates that 20 percent 

of accurate predictions were driven by the optimization of that feature. A drawback of the Gain 

metric is that it is not additive; the optimization of one feature is dependent on the other features 

present in this model. For this reason, I explore other approaches to interpret tree-based models. 

The second post-hoc analysis for tree-based models is a Shapley Additive exPlanations 

(SHAP) analysis. Derived from game theory, a Shapley value averages differences in predictions 

over all combinations of model features. This is different from the gain method that instead 

builds an order of model features based on their position in the tree (Shapley, 1953). An 

advantage of the SHAP analysis is that it breaks down feature importance by the categories of 

 
14 Increase in node purity is analogous to the Gini Index, which is considered the standard metric for evaluating 

features of random forest models (James et al.., 2023). 
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the outcome variable, where users can understand the directionality of the association between 

the model feature and outcome.15 The magnitude of the SHAP value reflects the strength of the 

feature. The SHAP value is represented in the same unit as the outcome of interest (i.e., 

likelihood that a student exited early) (Štrumbelj and Kononenko, 2010; Kunapuli, 2023; Khan et 

al., 2024). Another advantage of this approach is that SHAP values are additive, meaning that the 

contribution of each feature can be computed independently and then summed up. Similar to 

regression models, a SHAP analysis provides coefficients to describe the magnitude and 

directionality of each mode feature. With this approach, one can compute the predicted 

likelihood of a student exiting early with the formula: 

log 𝑜𝑑𝑑𝑠( 𝑌𝑖) = 𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 +  ∑ 𝛽𝑘𝑋𝑘 

𝑘

𝑖=1

 

where the base value represents the mean value of the outcome (in binary classification, this 

would be the equivalent of the proportion of instances of the minority class). The base value can 

be added to the sum of SHAP values, allowing for a local and precise interpretation of model 

outputs (Awan, 2023).  

Chapter Summary 

This chapter reviewed the analytic approach for my dissertation. I rely on North Carolina 

administrative student records from 2011 to 2018 to build a prediction model that flags students 

who are at risk of dropping out of high school in 9th or 10th grade. I employ data science methods 

to explore three research questions 1) develop prediction models with various statistical 

approaches and techniques and evaluate model accuracy, 2) examine each model’s ability to 

 
15 A recent study found that the SHAP value method was less biased than the gain metric (Lundberg & Lee, 2017). 
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provide equitable predictions for students from marginalized backgrounds, and 3) interpret 

model findings to identify salient predictors of early exit.  

For the first question, I develop 15 prediction models that employ one of the following 

approaches: logistic regression, lasso regression, ridge regression, random forest, and XGboost. 

Each model will have three variations based on the type of training data that was used in the 

model development phase: original, highly imbalanced data, balanced data with oversampling of 

minority instances, and balanced data with undersampling of majority instances. I test model 

accuracy of these models using AUC values, accuracy, sensitivity, and specificity. 

The second question assesses the extent to which the models developed in the first 

question provide fair predictions for students in protected attributes. I assess algorithmic fairness 

using two approaches: the ABROCA metric (Gardner et al., 2019) and equalized odds metric 

(Hardt et al., 2016).  

For the third research question, I interpret model findings for a subset of models. I extract 

and rank the salient predictors from the subset of models to better understand which factors are 

associated with early exit, as well as to understand potential overlap in relevant predictors across 

all the models. I rely on approaches such as feature importance plots and Shapley Additive 

exPlanations (SHAP) plots to understand which features are predictive of early exit
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CHAPTER 4: RESULTS 

Chapter Introduction 

This chapter presents the findings of this dissertation. The findings are organized by the three 

research questions that guide this analysis.  

The first question evaluates the performance of 15 models that vary by machine learning 

algorithm (i.e., statistical approach) and by the data used for model training, or the process of 

teaching a model to recognize patterns in data. Model performance is evaluated using multiple 

criteria, such as the area under the receiver operating characteristic (ROC) curve, accuracy rate, 

and accuracy rates for student subgroups based on their outcome label (i.e., “exited early” or “did 

not exit early”). The findings suggest that models that are trained with original, imbalanced data 

have high prediction accuracy of 97 percent but exhibit very low sensitivity, or proportion of 

correct predictions for minority instances. I find that the models that include resampling 

techniques – either oversampling minority instances or undersampling majority instances in the 

training data – greatly increases the sensitivity but at the cost of a lower specificity and a 

generally lower accuracy. Regression-based models tend to perform similarly across both types 

of resampled training data, whereas tree-based models tend to have higher sensitivity when 

trained with downsized training data than those with oversampled training data. 

The second question assesses the extent to which the same models are providing fair 

predictions that do not reinforce or create discriminatory practices. I use the ABROCA slicing 

analysis and equalized odds metric to evaluate algorithmic fairness. The ABROCA statistics 

suggest that all models, regardless of the data it was trained on or by its algorithm, tend to 

discriminate student predictions based on English proficiency status and disability status. The 

equalized odds metrics reveal that the undersampled logistic regression, compared to the 
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undersampled XGboost model, provides higher sensitivity (i.e., true positive rate) at the penalty 

of higher false alarms (i.e., false positive rates), with both models exhibiting the closest 

equalized odds ratios for the gender attribute. 

The third question seeks to analyze and interpret the features that were identified from the 

models developed in the first question. First, a comparison of model features from all 

undersampled models suggests a strong overlap in which features are predictive of early exit. 

The models collectively rank age as the strongest predictor of early exit, followed by middle 

school absences and being chronically absent. Additional post-hoc analyses of the undersampled 

XGboost model reveal heterogeneity in the association between age and early exit, and that the 

association between binary features and early exit may be more precise. 

4.1 Question 1 findings 

This question evaluates the predictive accuracy of the fifteen models described in Table 15.  The 

primary objective is to develop prediction models capable of identifying students at risk of 

dropping out of high school during their 9th or 10th grade years. To address this, I employ several 

supervised learning algorithms, which are statistical techniques that learn from input (or training) 

data where the outcome, referred to as the 'label,' is known. These algorithms construct 

inferences, recognize underlying patterns, and establish associations from the training data. In 

educational research, logistic regression is commonly employed as the standard method for 

predicting binary outcomes. However, this analysis also incorporates more sophisticated learning 

algorithms that are less frequently utilized in educational contexts but are more prevalent in data 

science. Specifically, I include two regression-based methods—lasso and ridge regression—as 

well as two tree-based approaches—random forest and extreme gradient boosting (XGboost). 



 

99 

All models were trained using data from first-time 6th grade students in the 2010-11 

school year. The first 5 models in Panel A were trained using the original training data which 

exhibited class imbalance, a common issue in predictive modeling where minority instances 

(e.g., students who exited early) are significantly outnumbered by majority instances (e.g., 

students who did not exit early). In the training data, students who exited comprised only 2 

percent of the sample, while those who did not exit early accounted for 98 percent. Class 

imbalance can be a challenge for prediction models as they typically prioritize predictions for 

majority class, often at the cost of inaccurately predicting the labels for the minority class (He & 

Ma, 2013; James, 2023).  

To address this issue, I develop two additional sets of models that employ the same 

supervised learning algorithms but with balanced training data, ensuring an equal ratio (1:1) of 

students who exited early to those who did not. The second set of models in Panel B address 

class imbalance using a resampling technique called SMOTE, (short for Synthetic Minority 

Oversampling Technique) that essentially clones the minority instances in the training data so 

that both classes are balanced (Chawla et al., 2002; Bunkhumpornpat et al., 2012). The third and 

final set of models in Panel C resamples by reducing instances in majority class until it is the 

same size as the minority class (Menardi & Torelli, 2014; Lunardon et al., 2014).  

The goal of a prediction model is to provide accurate predictions for new, unseen data. 

Therefore, the standard way to evaluate model performance is to measure its accuracy in 

classifying labels for test data, a sample that was not used during the training phase. All models 

were assessed with a separate testing sample of first-time 6th grade students in Fall 2011.  
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The following two subsections summarize the findings for the first research question; the 

first subsection examines the ROC curves, and the second subsection examines the accuracy 

rates for each model. 

4.1.1 ROC curves 

I examine receiver operating characteristic (ROC) curves as visual evidence of model 

performance. ROC curves illustrate the trade-off between true positives and false positives, 

offering a clear view of how well the model distinguishes between classes. By showing model 

performance across various decision thresholds, ROC curves are particularly valuable since they 

are not reliant on a single threshold. In contrast, other performance metrics are tied to a specific 

threshold, making ROC curves helpful in depicting a more comprehensive evaluation of model 

performance (Streiner & Cairney, 2007; Bowers & Zhou, 2019; Nakas et al., 2023). Figure 5 

presents the ROC curves of all fifteen models.  
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Figure 5: ROC curves  

Panel A: Models trained with original, imbalanced training data 

 

Panel B: Models trained with oversampled, balanced training data 

 

Panel C: Models trained with undersampled, balanced training data 
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The ROC curves in Panel A demonstrate that most of the machine approaches perform 

similarly across various thresholds, with the XGboost and lasso regression models exhibiting 

slightly higher sensitivity (true positive rate) than the other models. These curves help guide the 

tuning of Panel A models. Based on these ROC curves, I decided to set the decision threshold for 

the Panel A models at 0.2, where instances with predicted probabilities of 0.2 or higher are 

classified as 'early exit.' 

Panel B ROC curves illustrate steeper curves than that of Panel A, demonstrating an 

increase in the true positive rate (i.e., y-axis)  across all potential false positive rates. The 

convergence of the ROC curves in Panel B beyond where x = 0.5 suggests that Panel B models 

will exhibit similar tradeoffs between the two criteria at a threshold of 0.5 or above. I set the 

decision threshold to 0.4 for all models except for random forest. Because the random forest 

curve is lower than that of other curves, that means that it is not performing as well as other 

models. For this reason, I assign a lower decision threshold of 0.1 for random forest. 

Panel C ROC curves strongly overlap, suggesting that the five models can similarly 

distinguish between classes. In fact, it is challenging to identify an optimal model based solely 

on these curves. Additionally, the shape of the curves in Panel C closely resembles those from all 

the models in Panel B, with the exception of the random forest model. This reinforces the need to 

further evaluate model performance using additional metrics. 

4.1.2 Model performance 

I evaluate model performance using four metrics: area under curve (AUC), accuracy, 

sensitivity, specificity, and precision. The AUC score ranges from 0 to 1 and measures the area 

under the receiver operating characteristic (ROC) curve, capturing the model’s ability to 

distinguish between classes. Accuracy is the proportion of correct predictions. Sensitivity 
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indicates the proportion of predicted instances for the minority instances, or students who exited 

early. In contrast, specificity measures the proportion of correct predictions for the majority class 

(i.e., students who did not exit early). Precision is the proportion of true positives out of all 

predicted positive instances. Table 18 presents the performance metrics for each model. 

Table 18: Model Performance  

Model AUC Accuracy Sensitivity Specificity 
 

Precision 

Panel A: Models trained with 

original imbalanced data (n = 

89,716) 

 

Logistic Regression 0.90 0.97 0.20 0.99 0.49 

Lasso Regression 0.90 0.97 0.19 0.99 0.50 

Ridge Regression 0.91 0.97 0.17 0.99 0.51 

Random Forest 0.85 0.97 0.31 0.99 0.37 

XGboost  0.91 0.97 0.33 0.99 0.39 

Panel B: Models trained with 

oversampled data (n = 175,021) 

 

SMOTE Logistic Regression 0.90 0.83 0.81 0.83 0.11 

SMOTE Lasso Regression 0.91 0.79 0.86 0.79 0.09 

SMOTE Ridge Regression 0.91 0.82 0.84 0.81 0.06 

SMOTE Random Forest 0.86 0.82 0.75 0.83 0.10 

SMOTE XGboost  0.90 0.86 0.73 0.86 0.12 

Panel C: Models trained with 

undersampled data (n = 3,102) 

 

US Logistic Regression 0.90 0.81 0.84 0.81 0.14 

US Lasso Regression 0.91 0.82 0.84 0.82 0.17 

US Ridge Regression 0.91 0.81 0.84 0.81 0.10 

US Random Forest  0.90 0.74 0.89 0.74 0.08 

US XGboost  0.91 0.79 0.87 0.79 0.10 

Notes: SMOTE stands for Synthetic Minority Oversampling Technique and refers to synthetic data used to 

upsample the minority class in the training data. US stands for undersampling and refers to training data that 

reduce instances of the majority class. 

 

In examining Panel A model performance, the first two metrics – AUC and accuracy – 

suggest that all models are making highly accurate predictions. The AUC values reflect an 85 to 
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91 percent likelihood that each model will correctly identify a random student who exited early 

as having a higher probability of dropping out than a randomly chosen student who did not. 

Moreover, all models correctly predicted exit status for 97 percent of the test sample. While 

these results may initially seem promising, the subsequent three metrics reveal that model 

performance is not as strong as it appears. The specificity metric of 0.99 indicates that the 

models are accurately predicting the exit status of 99 percent of students who remained in high 

school beyond 10th grade. However, Panel A models fall short in terms of sensitivity. All models 

provide poor sensitivity that falls between 17 to 33 percent. Notably, regression models – 

logistic, lasso, and ridge regression – demonstrate the lowest sensitivity, while tree-based models 

(XGBoost and random forest) provide slightly higher sensitivity of 31 to 33 percent. This 

indicates that a Panel A model, at best, will not correctly label over two-thirds of all students 

who had exited early. A precision of 0.49 reflects that among all the instances predicted to have 

exited early, 49 percent of them were accurate. The precision rates suggest that regression 

models have higher precision than tree models, although all models overclassified at least half of 

the true at-risk population. 

Panel B presents performance of models that were trained using balanced data that 

included synthetic instances of the minority class achieved via SMOTE. Compared to Panel A 

models, Panel B models observe similar AUC values but offer significant improvements in 

sensitivity. However, this increase in sensitivity comes at the expense of reduced overall 

accuracy and lower specificity. The pattern of model performance remains consistent across 

algorithm types, with regression-based models maintaining higher sensitivity and tree-based 

models exhibiting greater specificity. However, it is worth noting that the random forest models 

in Panel A and B have the lowest AUC values, suggesting a lower model performance.  
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Panel C presents the performance of models trained using balanced data created by 

downsampling majority instances to match the number of minority instances. Compared to the 

models in Panel B, those in Panel C exhibit slightly lower accuracy rates, with tree-based models 

experiencing the most pronounced decline of 8 to 9 percentage points. However, both XGboost 

and random forest models demonstrate substantial improvements to sensitivity relative to their 

counterparts in first two panels. Notably, these two models surpass the sensitivity of regression-

based models in Panel B, albeit at the cost of a slight reduction in specificity. Among all 15 

models, undersampled XGboost random forest exhibit the highest sensitivity of 89 percent with 

SMOTE XGboost providing both the highest accuracy and specificity. 

In summary, regression-based models generally exhibit consistent performance across 

both types of resampled training data. The Wilcoxon rank sum test confirms that models trained 

on imbalanced data have lower AUC values (p < .001), and that there are no statistically 

significant differences in AUC values in Panel B and C models (p > 0.05). A closer comparison 

of models in Panels B and C suggest that tree-based models demonstrate greater sensitivity to 

reductions in training data size, often experiencing a more pronounced decline in performance 

with downsized datasets compared to oversampled ones. This discrepancy highlights the inherent 

robustness of regression models to variations in data availability, while tree-based models may 

be more reliant on larger sample sizes to maintain predictive accuracy. This comes at a cost 

where both Panel B and C models exhibit lower precision, with Panel C models offering slightly 

higher precision. 

Although the findings from this analysis offer valuable insights, further information is 

required to evaluate model performance across various student subgroups, with particular 

attention given to students from marginalized backgrounds. The evaluation of model fairness is 
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essential to ensure that the models are equitable and provide accurate predictions for all students, 

especially those who may be at higher risk of exiting early.  

4.2 Question 2 findings 

This question evaluates the extent to which the fifteen models provide fair predictions for 

students from protected student attributes (i.e., historically marginalized backgrounds). I first 

“slice” the test data into subgroups for each attribute, designating one as the baseline (non-

protected) group and the other as the comparison (protected) group. These attributes include 

gender (female and male), disability status (having an IEP and not having an IEP), English 

learner status (Limited English Proficient and not Limited English Proficient), financial hardship 

(economically disadvantaged and not economically disadvantaged), and race or ethnicity (non-

White and White). I assess algorithmic fairness across subgroups using two fairness metrics: 

Area Between ROC Curves (ABROCA) value and the equalized odds statistic.   

4.2.1 ABROCA findings 

Table 19 presents the ABROCA values for each of the five protected attributes. Each ABROCA 

value indicates the difference in AUC between that of the baseline group and the comparison 

group for that attribute. In Panel A, the first value for logistic regression under the gender 

attribute – 0.006 – indicates the difference in AUC between model performance for male and 

female students. This difference translates to a 0.6 percent higher likelihood that the Panel A 

logistic regression will misclassify an instance as an early exit based on the instance’s gender. 
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Table 19: ABROCA Statistics 

 PROTECTED ATTRIBUTE 

MODEL Gender 

English 

Learner 

Status 

Disability 

Status 

Economic 

Disadvantage 

Race/ 

Ethnicity 

Panel A: Models trained with 

original data (98:2)  

Logistic Regression 0.006 0.090 0.058 0.045 0.033 

Lasso Regression 0.005 0.087 0.060 0. 045 0.031 

Ridge Regression 0.006 0.089 0. 058 0. 045 0.032 

Random Forest 0.021 0.077 0.041 0.034 0.018 

XGboost 0.006 0.095 0.060 0.048 0.034 

Panel B: Models trained with 

SMOTE data (1:1)    

SMOTE Logistic Regression 0.004 0.082 0.059 0.042 0.029 

SMOTE Lasso Regression 0.004 0.080 0.061 0.042 0.023 

SMOTE Ridge Regression 0.004 0.080 0.061 0.043 0.029 

SMOTE Random Forest 0.017 0.090 0.043 0.038 0.027 

SMOTE XGboost  0.006 0.100 0.063 0.032 0.035 

Panel C: Models trained with 

undersampled data (1:1)      

US Logistic Regression 0.003 0.086 0.056 0.042 0.027 

US Lasso Regression 0.005 0.092 0.056 0. 043 0.040 

US Ridge Regression 0.007 0.101 0.046 0.043 0.041 

US Random Forest 0.013 0.093 0.059 0.044 0.033 

US XGboost 0.007 0.100 0.062 0.048 0.038 

Notes: SMOTE stands for Synthetic Minority Oversampling Technique and refers to synthetic data used to 

upsample the minority class in the training data. Undersampling refers to training data with reduced instances of 

the majority class in the training data. The ABROCA value is calculated by taking the difference in AUC 

between that of the baseline (majority) group and that of the comparison (minority) group of that attribute. A 

Kruskal-Wallis was used to detect differences in ABROCA values within a protected attribute. For attributes that 

rejected the null hypothesis of the Kruskal-Wallis test, a Wilcoxon signed-rank test identified which values were 

statistically significant from zero. ***p < 0.01 
 

 

 First, the ABROCA findings generally demonstrate little variability in statistics within an 

attribute. I rely on the Kruskal-Wallis test that tested the null hypothesis that the ABROCA 
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values are the same within attribute. I conduct the Kruskal-Wallis test once for each attribute. 

The tests confirmed that there are no differences in subgroup performance for each attribute (p > 

0.05). This means that that all models perform similarly for any one attribute (e.g., there is no 

statistically significant difference between an ABROCA values of 0.003 and 0.017 under the 

gender attribute).  

 Second, the results reveal substantial variability in ABROCA values across protected 

attributes. The highest ABROCA values were observed for the English proficiency attribute, 

ranging from 0.077 to 0.101, followed by the values under the disability attribute. Meanwhile, 

the gender attribute exhibited the smallest differences in subgroup performance. Notably, any 

ABROCA value for English proficiency is at least 3.5 times larger than those for gender.  

There is no known empirical guidance that suggests a threshold for ABROCA values that 

would designate a protected attribute as discriminatory. Despite this not being discussed in the 

field, I argue that ABROCA values alone do not provide sufficient information to determine 

whether a model discriminates based on a protected attribute. Further analysis is necessary to 

examine the directionality of model performance – for example, whether the model performs 

worse for Limited English Proficient students or non-Limited English Proficient students.  

In summary, the ABROCA slicing analysis reveals two key insights: 1) it did not detect 

variation in algorithmic fairness across models for any single attribute, indicating that all models 

performed similarly for each attribute, and 2) it uncovered significant disparities in model 

performance across subgroups, raising the need for additional exploration of certain protected 

attributes.  

I contend that the ABROCA slicing results, in isolation, do not provide a comprehensive 

understanding of algorithmic fairness. The ABROCA statistics are derived from AUC (Area 
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Under the Curve) values, which, as discussed in Section 4.1.2, should not be used as the sole 

metric to evaluate model performance. Although a model may exhibit a high AUC, it aggregates 

performance across all decision thresholds, which may not necessarily reflect fairness in 

decision-making. Since model accuracy depends on the decision threshold used to assign labels 

to instances, it is plausible that algorithmic fairness could vary not only across different 

thresholds but also between algorithms. Therefore, I extend the analysis to examine how models 

perform across subgroups defined by protected attributes, providing a more nuanced evaluation 

of fairness. 

4.2.2 Equalized odds findings 

The second fairness criteria, the equalized odds metric, is achieved when both subgroups of an 

attribute share the same sensitivity (i.e., true positive rate) and false alarm rate (i.e., false positive 

rate) for each subgroup (Hardt et al., 2016). This metric differs from the ABROCA slicing 

analysis in that the metric relies on a decision threshold to compare model performance across 

subgroups. I present abridged results that only share equalized odds metrics for a subset of the 

fifteen models.  

Among the fifteen models, I selected the two models that met two criteria. I rely on 

earlier findings from this analysis and select models that 1) provided the highest mean of 

sensitivity and sensitivity (derived from Table 18 performance metrics), and 2) had smallest 

ABROCA values across all attributes. This decision-making process narrowed it down to two 

models: the undersampled logistic regression model and the undersampled XGBoost model.  
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Table 20 provides the equalized odds metrics for the two selected models.16 As described 

in 3.7.2, the equalized odds criterion compares the sensitivity (i.e., the true positive rate) and the 

false alarm rate (i.e., the false positive rate) between the baseline (Ab) and comparison (Ac) 

subgroups in each attribute (Hardt et al., 2016; Wadsworth et al., 2018; Baker & Hawn, 2021). 

The baseline and comparison groups correspond to the same subgroups established in the 

ABROCA slicing analysis, with the baseline capturing students from the non-protected group 

and the comparison consisting of students from the protected group. For each attribute A, 

sensitivity ratio is computed by dividing the sensitivity of  Ab with the sensitivity of Ac. The 

false alarm ratio is computed with the same steps but using the false alarm rates. The equalized 

odds ratio is the quotient of the sensitivity ratio divided by that of the false alarm ratio. 

The sensitivity and false alarm rate ratios can be interpreted as follows: a ratio of exactly 

1 indicates that the respective metric (either sensitivity or false alarm rate) is equal across 

subgroups, thus meeting one of the criteria for equalized opportunity. A ratio below 1 suggests 

bias towards the comparison group, while a ratio above 1 indicates bias towards the baseline 

group. The closer a ratio is to 1, the closer the model is to achieving equalized odds.  

Table 20: Equalized odds findings 

 US XGBoost US Logistic Regression 

 Baseline 

Comparis

on 

Equalized 

Odds 

Ratio Baseline 

Comparis

on 

Equalized 

Odds Ratio 

Gender       

Sensitivity 0.89 0.82 1.09 0.93 0.89 1.04 

False alarm rate 0.27 0.17 1.59 0.35 0.25 1.40 

English Learner 

Status       

 
16 The decision thresholds for these models follow what was used in the analysis of the first research question. The 

decision thresholds for the undersampled XGBoost and undersampled logistic regression are 0.4 and 0.6, 

respectively. 
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Sensitivity 0.87 0.82 1.06 0.92 0.89 1.03 

False alarm rate 0.20 0.37 0.54 0.30 0.47 0.64 

Disability Status       

Sensitivity 0.84 0.93 0.90 0.89 0.97 0.92 

False alarm rate 0.17 0.48 0.35 0.26 0.63 0.41 

Economic 

disadvantage       

Sensitivity 0.72 0.90 0.79 0.84 0.94 0.89 

False alarm rate 0.08 0.36 0.21 0.19 0.44 0.43 

Race/Ethnicity       

Sensitivity 0.86 0.88 0.98 0.91 0.92 0.99 

False alarm rate 0.15 0.27 0.56 0.25 0.36 0.69 
Notes: US is short for undersampling and refers to training data with reduced instances of the majority class. 

The sensitivity is the true positive rate, or the proportion of the subgroup that was correctly labeled as an 

"early exit." The false alarm rate is the false positive rate, or the proportion of the subgroup that was 

mislabeled as an "early exit." The equalized ratio in columns 3 and 6 is computed by dividing the baseline 

metric (either sensitivity or false alarm rate) by same comparison group metric. 

The findings in Table 20 demonstrate that the logistic regression model provides higher 

sensitivity rates for subgroups across all attributes. This suggests that the logistic regression 

model is more effective than the XGboost model at correctly labeling students as ‘exited early.’ 

However, this comes with a trade-off: the logistic regression model also exhibits a relatively 

higher false alarm rate for subgroups in all attributes. This indicates that the logistic regression 

model is more susceptible to misclassifying students who did not exit early as having ‘exited 

early,’ leading to an increased number of false positives. This higher mislabeling suggests that 

while the logistic regression model is better at detecting early exits, it sacrifices some degree of 

precision in its predictions, leading to more instances of incorrect classifications. 

The equalized odds ratios in columns 3 and 6 reflect the model's balance, or its ability to 

maintain similar sensitivity and false alarm rates across both the baseline and comparison 

subgroups of an attribute. In examining the odds ratios, I find that both the XGboost and logistic 

regression models provide similar sensitivity ratios across most attributes, with sensitivity ratios 

in the logistic regression model providing ratios that are slightly closer to 1.  
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In comparison to the XGboost model, the logistic regression model provides false alarm 

equalized odds ratios that are closer to 1 across all attributes except for gender. The economic 

disadvantage false alarm ratio for the XGboost model, however, is significantly lower than that 

for the logistic regression model (0.21 and 0.43, respectively).  

The equalized odds criterion is theoretically achieved when the ratios between the 

sensitivity and false alarm ratios in an attribute are both equal. The ratios provided in Table 19 

suggest that although the equalized odds criterion is not formally satisfied by any attribute, 

model predictions tend to discriminate the least for students based on their gender, race and 

ethnicity. Moreover, the ratios in logistic regression exhibit a smaller gap between sensitivity and 

false alarm ratios, exhibiting a more “balanced” approach in its model performance between non-

protected groups and protected groups of an attribute.  

4.3 Research Question 3 findings  

This question utilizes post-hoc explainability methods to identify salient predictors of students 

who exited high school in 9th or 10th grade. Rather than focusing on a single model, I first 

examine model features from all undersampled models.  

The second part of this research question takes a deep dive of the undersampled XGboost 

model and uses additional post-hoc approaches such as feature importance plot and Shapley 

Additive exPlanations (SHAP) beeswarm plot to rank features that are predictive of early exit.  

4.3.1 Predictors of early exit across undersampled models 

I extract relevant predictors from the logistic regression models by first selecting 

coefficients that reject the null hypothesis of the Wald z-test that the coefficient is statistically 

different from zero at the 95 percent confidence interval or higher (where p > 0.05). For 

regularized regression (i.e., lasso and ridge regression) models, I extract predictors with 
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coefficients larger than 0.1. For tree-based (i.e., random forest and XGBoost) models, I rely on 

feature importance plots that ranks model features by a given metric. The random forest plot 

provides the percent increase in node purity and the XGBoost feature importance plot provides 

the gain metrics. Finally, I rank the extracted predictors from each model by their magnitude.  

Table 21 provides a color-coded chart to organize predictors of early exit, where 

predictors are disaggregated into four categories: strongly predictive, moderately predictive, 

weakly predictive, and not predictive. The darkest shade of blue reflects the indicators most 

predictive of early exit, while teal reflects the ones that are moderately predictive, and light blue 

reflects the indicators that are weakly predictive. Predictors with an unshaded box were either 

not identified as predictive, had a coefficient magnitude less than 0.1, or were not statistically 

significant at the 95 percent confidence level (statistical significance was only observed for the 

logistic regression models).  

Features for the logistic, lasso, and ridge regressions were ranked by coefficient 

magnitude where coefficients with an absolute value between 0.1 and 0.33 were weakly 

predictive; those between 0.33 and 1 were moderately predictive; and those at 1 or above were 

strongly predictive. Features for the random forest were ranked by the percent increase for node 

purity where features at or above 100 percent were strongly predictive, and features between 30 

to 50 percent were moderately predictive, and those between 10 to 30 percent were weakly 

predictive.  Finally, features for XGboost models were categorized using the gain metric 

provided by feature importance plots where gain values greater than or equal to 0.1 were strongly 

predictive; gain values between 0.05 and 0.1 were moderately predictive; and gain values 

between 0.03 and 0.05 were weakly predictive. 

 



 

 

 

Table 21: Features predictive of early exit from high school 

 

 Panel C: Undersampled Models 

  

Logistic 

Regression 

Lasso 

Regression 

Ridge 

Regression 

Random 

Forest XGBoost 

Student characteristics      
Economically disadvantaged           

Age           

IEP      
Ever had an IEP in a middle grade       
Limited English proficient       
Ever limited English proficient in 8th 

grade        
Urban      
Suburban      
Town        
Rural      
Academic information      
Not math proficient in 6th grade          
Not math proficient in 7th grade           

Not math proficient in 8th grade         
Not math proficient in all middle grades       
Not reading proficient in 6th grade        
Not reading proficient in 7th grade       
Not reading proficient in 8th grade          

Not reading proficient in all middle 

grades      
Attendance information      
Absence rate in 6th grade           

1
1
4
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Absence rate in 7th grade          
Absence rate in 8th grade          
Chronically absent in 6th grade      
Chronically absent in 7th grade       

Chronically absent in 8th grade         

Ever chronically absent in a middle grade           

Chronically absent in all middle grades      
School mobility in 6th grade        
School mobility in 7th grade      
School mobility in 8th grade        
School mobility in a middle grade          
Discipline information      
OSS in 6th grade      
OSS in 7th grade         

OSS in 8th grade         

OSS in a middle grade        
ISS in 6th grade        
ISS in 7th grade      
ISS in 8th grade         

ISS in a middle grade      
Ever suspended in a middle grade       
ST suspension in a middle grade          

LT suspension in a middle grade       
Notes: Undersampling refers to resampled training data with downsized majority instances to match the number of instances the minority class. 

The models presented in this table correspond to Models 10 to 15 reported in Table 17. Unshaded boxes indicate that the feature had a coefficient 

below value 0.1, and for logistic regression, were not significant at the 95 percent confidence level. 

1
1
5
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Table 21 reveals that age is unanimously a strong predictor of early exit, followed by 6th, 7th, 8th 

grade absence rates, and later trailed by being chronically absent in a middle grade. Receiving a 

short-term suspension in a middle grade, being chronically absent in 8th grade, and not being 

proficient in 7th grade math are moderately to weakly predictive of early exit. The findings 

suggest strong agreement between the lasso regression and ridge regression output, with both 

models ranking the predictive importance of features most similarly. All but one feature 

identified by XGboost (being chronically absent) were also identified by at least 2 other models. 

Compared to the other undersampled models, the XGboost model provides a very sparse model 

by identifying a small number of features. Conversely, the ridge regression model provides the 

greatest number of predictive features. 

4.3.2 Deep dive of undersampled XGBoost model 

 The undersampled XGboost model is further explored with two approaches: a feature 

importance plot and a SHAP beeswarm plot. Figure 6 illustrates the XGboost model’s feature 

importance plot. It displays gain values, or values that indicate the proportion of accurate 

predictions that optimized that feature. For instance, a gain value of 0.13 indicates that 13 

percent of all correct predictions utilized that model feature. 
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Figure 6: Undersampled XGboost importance plot 

 

Notes: Gain represents the improvement in accuracy brought on by that specific feature; it provides the 

proportion of accurate predictions that optimized that feature.  

 

The feature importance plot reveals that age in 8th grade, being chronically absent in a 

middle grade, followed by 8th grade and 7th grade absences were utilized the most in optimizing 

predictions. Notably, the inclusion of age results in an average gain of 0.45 splits that use this 

feature. A drawback of this approach is that decision trees are biased towards features that have 

more split points. Features are ranked based on the number of splits the feature is involved in. 

Because continuous features can be split into more levels compared to binary features, 

continuous features (i.e., age and absence rates) tend to be ranked higher in feature importance. 

Moreover, this plot does not reveal the directionality of the association between model features 
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and early exit. Recognizing the limitations of gain values, I employ other approaches to 

interpreting the XGboost model.  

I explore the SHAP Beeswarm plot, as presented in Figure 7, which shows how each 

feature independently influences the final prediction. The features are ranked in descending 

order. The reported values near the feature name represent the mean SHAP value. The x-axis 

provides SHAP values that are analogous to the predicted probability provided by the model, or 

the log-odds that an instance will exit early. The magnitude of the SHAP value indicates the 

strength of the feature’s contribution, where purple dots indicate that the feature pushes the 

model towards predicting a higher likelihood of exiting early, whereas values in yellow push the 

model towards a lower likelihood (Cooper, 2021). The directionality of the feature’s contribution 

is captured by the SHAP values, where a positive SHAP value suggest a positive contribution to 

the prediction, whereas negative values indicate a negative contribution. As described in 3.8.2, 

the final prediction can be computed using a fixed base value added to the sum of computed 

SHAP values. The base value is the proportion of instances in the test data who exited early and 

the mean SHAP value for each value is multiplied by instance i’s value for that feature. The 

model specification is similar to that of a logistic regression. The mean SHAP values provided in 

Figure 7 allow a formal specification of the undersampled XGboost model, where: 

log 𝑜𝑑𝑑𝑠( 𝑌𝑖) = 2.5 +  1.131(𝐴𝑔𝑒𝑖) + 0.352(𝐺𝑟𝑎𝑑𝑒 8 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒𝑖) … + 0.001 (𝐺𝑟𝑎𝑑𝑒 8 𝑐ℎ𝑟𝑜𝑛𝑖𝑐 𝑎𝑏𝑠𝑒𝑛𝑐𝑒𝑖) 
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Figure 7: Undersampled XGBoost SHAP Beeswarm Plot 

 

 

The beeswarm plot provides a very similar ranking of model features to that of the 

feature importance plot. Both plots rank age as the strongest predictor, followed by middle 

school absenteeism and economic disadvantage.  

Figure 7 depicts that when binary features (e.g., math or reading proficiency, chronic 

absence, or receiving a form of suspension) take a value of 1, then the SHAP value (i.e., log-odds 

of exit early) is high. The continuous features – age and absence rates for each middle grade – 

demonstrate significant variation in magnitude and directionality. For middle grade absence rate 

features, we see that lower values of an absence rate have negative SHAP values (the points 

extending towards the left are increasingly yellow), but the reverse is not observed. A strong, 

positive association between absence rate and early exit would be depicted by purple dots for 
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positive SHAP values, but this is not the case. I observe that positive SHAP values for absence 

rates and age contain many yellow dots with no clear gradient that becomes increasingly purple. 

This indicates that instances that may be an older age or that exhibit higher absence rates do not 

have high contributions towards predicting early exit status.  

Chapter Summary 

This chapter presents the results of this dissertation, organized according to the three research 

questions guiding the analysis. The first question examines the performance of 15 models that 

differ in machine learning algorithms (i.e., statistical methods) and in the data used for training. I 

evaluate model performance with various criteria, such as the area under the curve (AUC) value, 

overall accuracy, and accuracy rates for student subgroups based on their outcome label (i.e., 

“exited early” or “did not exit early”). The results indicate that models trained on the original, 

imbalanced data achieve a high prediction accuracy but have very low sensitivity, meaning they 

struggle to make accurate predictions for minority instances. I find that models incorporating 

resampling techniques – either oversampling minority instances or undersampling majority 

instances – usignificantly improve sensitivity, though at the expense of lower specificity and 

reduced overall accuracy.  

The second question evaluates the fairness of these models. I use ABROCA slicing 

analysis and the equalized odds metric to assess algorithmic fairness. The ABROCA statistics 

reveal that all models, regardless of their training data or algorithm, tend to discriminate based 

on students' English proficiency and disability status. The equalized odds metrics show that the 

undersampled logistic regression model provides higher sensitivity (true positive rate) than the 

undersampled XGBoost model, but at the cost of more false positives (higher false positive rate). 

Both models, however, exhibit similar equalized odds ratios concerning gender. 
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The third question interprets model findings. A comparison of features across all 

undersampled models reveals strong consistency in the predictors of early exit. Across the 

models, age is ranked as the strongest predictor of early exit, followed by middle school 

absences and chronic absenteeism. Further post-hoc analysis of the undersampled XGBoost 

model uncovers variation in the relationship between age and early exit, as well as more precise 

associations between binary features and early exit. 
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CHAPTER 5: CONCLUSION 

Chapter introduction 

The final chapter synthesizes the key lessons from this dissertation. It acknowledges the 

limitations of the analysis and their implications for interpreting findings; discusses the results of 

each research question and its significance for future research; outlines potential avenues to 

enhance or extend this work; and offers recommendations that contribute to the development of a 

robust early warning system. 

5.1 Limitations 

This section outlines the limitations of this dissertation, which can be grouped into three 

categories: technical limitations, referring to the drawbacks associated with the choice of 

statistical software; data limitations, which pertain to student engagement indicators that are not 

captured in the data; and design limitations, which involve the decisions made during the 

analysis that influence the interpretation and implications of the findings. 

5.1.1 Technical limitations 

The decision to conduct this analysis using R programming software limits the potential 

for broader scientific exploration. Unlike Python, which offers powerful data science tools such 

as Scikit-learn, R does not provide the same range of capabilities for tasks like hyperparameter 

tuning and model visualization. Libraries like Scikit-learn offer more advanced options that are 

crucial for refining models and ensuring they are optimized to their full potential. As a result, the 

decision to use R constrains the flexibility and depth of analysis that could have been achieved 

through Python's more robust data science ecosystem. 
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5.1.2 Data limitations 

This subsection discusses limitations related to the administrative data leveraged in this 

dissertation. First, this analysis does not include coursework engagement data as model features. 

These data are typically captured in transcript data such as course grades, GPA, or the types of 

courses taken. This is a significant limitation as prior empirical work have underscored the 

critical role of academic performance – especially course failure and GPA – in predicting high 

school dropout (Balfanz, 2009; Bowers & Sprott, 2012a, 2012b; Bowers et al., 2013). Indeed, 

most studies that predict high school dropout have included course performance as a model 

feature and have consistently identified it as one of the strongest predictors of early exit 

(Knowles, 2015; Sorenson, 2019; Sansone, 2019; Lee & Chung, 2019). This gap in my data 

could disproportionately impact the accuracy of predictions for students who face additional 

academic challenges. Given the strong relationship between academic performance and the 

likelihood of dropping out, the absence of more detailed coursework information may drive the 

lack of predictive power observed in my models, especially for students who are Limited English 

Proficient.  

There is an increasing recognition that attendance, behavior, and coursework (ABC) 

indicators may not fully capture all dimensions of student’s schooling experience. Recent 

replication studies have found that certain ABC indicators, particularly absence and suspension 

indicators, may exhibit low accuracy and sensitivity (Bowers & Zhou, 2019). These limitations 

raise concerns about the validity of using such indicators for early warning systems or predictive 

modeling, as misclassification or underestimation of at-risk students could lead to ineffective or 

misguided interventions. This reinforces the importance of considering alternative or 

complementary metrics to improve the predictive power of dropout prediction models. 
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Alternative types of data, such as school climate, students’ sense of belonging, socioemotional 

well-being, and the quality of relationships with teachers, may better capture schooling 

experiences. Research has shown that these factors significantly influence student engagement 

and, ultimately, academic outcomes (Jackson, 2018; Balfanz, 2018). The COVID-19 pandemic 

has further amplified these concerns by introducing a host of challenges for both students and 

educators, including heightened feelings of loss, alienation, depression, and other mental health 

struggles. Such issues have profound implications for students' well-being, which in turn affects 

their academic engagement and success (Snyder, 2022; Su et al., 2022). The disruption caused by 

the pandemic has underscored the importance of considering mental health and emotional 

support as indicators in early warning systems. Neglecting these factors may result in an 

incomplete understanding of the challenges students face in terms of academic disengagement 

and potential dropout. This gap in the data is a common limitation in research settings that 

primarily rely on administrative records to build generalizations about students' overall 

educational experiences. Moreover, this analysis relies on statewide administrative data, further 

exacerbates this issue. It is very likely that schools, districts, and counties have rich, contextual 

data that can provide deeper insights into student engagement levels. In short, the lack of 

contextual data (such as those reported by students and teachers) prevents a holistic 

understanding of the factors associated with student disengagement. 

Lastly, it would be extremely valuable to have data that identifies whether a student has 

been flagged as at-risk by their school or district, along with key details such as when they were 

first identified, the specific interventions they received, and if their risk status changed. The 

inclusion of such information could significantly enhance the development of predictive models 

and early warning systems because it could illuminate if early identification works, for whom, 
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and under what conditions. Moreover, it can highlight discrepancies in disparities between early 

identification via statistical modeling (i.e., an early warning system) versus current applications 

in a K-12 setting. Such data could help to determine whether early identification truly leads to 

better outcomes and could offer a clearer picture of which strategies work best for supporting at-

risk students. 

5.1.3 Design limitations 

First, this analysis assumes that students who exited the North Carolina public school 

system have permanently discontinued their schooling journey. This assumption cannot be 

confirmed as I am unable to observe the trajectory of students who have withdrawn from the 

state’s public system. The outcome being observed could signal various decisions. One 

possibility is that students had exited the public school system to complete their education in 

another setting, such as a charter school, a private school, or to take the General Education 

Development (GED) test and earn a high school equivalency diploma. This possibility may be 

particularly relevant for studies that predict high school dropout in post-pandemic school years, 

as recent studies suggest that declining public school enrollment is associated with increases in 

private school enrollment (Dee, 2023; Lieberman & Riser-Kositsky, 2024).  

Second, the analysis includes “stopouts”, or students who temporarily discontinue 

schooling in either 9th or 10th grade and return to the public school system in a subsequent school 

year. I assign the outcome of “early exit” status to only capture students who do not return to 

school for the following 4 or 5 school years. As a result, the analysis assigns stopouts – students 

who leave school temporarily but eventually return – with the outcome "did not exit early". 

There is a lack of empirical evidence exploring whether student engagement differs between 

stopouts and those who have remained continuously enrolled in the school system. A lack of 
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distinction between stopouts and students who never stopped may mask patterns of student 

disengagement that contribute to early exit. 

Third, the analysis is unable to build assumptions of what a student’s age in 8th grade is 

indicative of. In other words, it is possible that student age captures institutional decisions that 

were made prior to 6th grade, such as repeating or skipping a grade.17 Because the analysis does 

not examine school engagement before a middle grade, the age feature could be a function of 

unobserved student behavior. 

Fourth, the consistent prioritization of age in generating accurate predictions may be due 

to the structure of the age feature. With the exception of age, absence rates, and school mobility 

features, most of the model features are binary. Among the few features that are continuous in 

nature, the age feature is the largest age spread of values (i.e., standard deviation) amongst all 

model features (see Table A1 and A2 for descriptive statistics of model features). A decision tree 

(i.e., a single model used in tree-based models) tends to assign greater importance to continuous 

features over binary ones. This is because continuous variables can be split at multiple cut points, 

offering more flexibility in partitioning the data (Zhou & Hooker, 2021). For instance, a feature 

like age can be split into intervals (e.g., students aged between 13.5 and 14.2 years or those older 

than 13.7 years), enabling the tree to maximize information gain based on the most relevant cut-

off points. In contrast, binary features are limited to just two potential splits, reducing their 

ability to capture nuanced patterns in the data. 

Lastly, a limitation of this analysis lies in the choice of approach for addressing the third 

research question. While SHAP beeswarm plots were used to interpret models, alternative 

 
17 North Carolina is one of the few states where kindergarten is not compulsory. Students enrolled in kindergarten 

can move to the next grade at the discretion of the school principal. 
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methods, such as partial dependence plots (PDPs), could have provided more insightful results. 

PDPs are graphical tools that illustrate the relationship between a model feature and the outcome 

variable, while controlling for other variables. These plots reveal both the importance of a feature 

and the nature of its relationship with the outcome (e.g., linear, quadratic, monotonic). Unlike 

linear regression coefficients, PDPs can be applied to more complex models, including tree-

based algorithms. One key advantage of PDPs is their ability to explore individual features and 

their interactions with others, which enhances model interpretability. As demonstrated by 

Cannistrà et al. (2022), PDPs can improve the communication of model insights, making 

complex models more accessible to non-technical audiences. 

5.2 Discussion of findings 

The goal of this dissertation is to leverage middle school data to predict if a student is at risk of 

dropping out of high school in 9th or 10th grade. I employ data science methods to explore three 

areas relevant to dropout prediction: 1) develop prediction models with various statistical 

approaches and techniques, 2) examine each model’s ability to provide equitable predictions for 

students from marginalized backgrounds, and 3) interpret model findings to identify salient 

predictors of early exit.  

5.2.1 Discussion of model performance 

The evaluation of model performance reveals several noteworthy patterns. First, models 

trained on highly imbalanced data – where the number of students who exited early (the minority 

class) is vastly outnumbered by those who did not (the majority class) – tend to neglect the 

minority instances, essentially classifying all observations as 'did not exit early.' The model’s 

inability to identify the target population (i.e., students who exited early) is masked by several 

metrics, such as high accuracy and AUC values (97 percent and 0.90, respectively). This 
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highlights the necessity to examine additional performance metrics and model performance for 

student subgroups. 

In contrast, I find that resampling techniques applied to the training data – whether 

through oversampling minority instances or undersampling majority instances – are effective in 

identifying the target population. However, this improvement comes at a cost, where  models 

trained on balanced data tend to mislabel a higher proportion of students as having 'exited early' 

(see Table 17). Methods that utilize tree-based models, such as random forests and XGBoost, 

appear to be more effective at accurately predicting minority instances when trained on 

undersampled data, compared to oversampled data. This assessment of model performance 

highlights the potential for balanced training data to deliver precise predictions and that logistic 

regression performs similar to more complex statistical approaches. There is no definitive 

“winner” among the models, as some perform better at identifying majority instances, while 

others excel at identifying minority instances. The most suitable model depends on the context 

and purpose, which can vary by the researcher, school or district, and setting. 

It is important to note that, across all panels, the random forest model demonstrated the 

lowest performance. Specifically, the random forest models in Panels A and B exhibited the 

lowest AUC values, while the model in Panel C recorded the lowest specificity at 74 percent. 

These results underscore the distinct roles of bagging and boosting techniques in managing the 

tradeoff between bias and variance. The random forest model, which employs the bagging 

approach, reduces variance by constructing independent trees and aggregating their predictions 

through majority voting. In contrast, the boosting technique, as utilized by XGBoost, mitigates 

bias by sequentially constructing trees, where each new tree corrects errors made by the 
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preceding models. This distinction is reflected in the superior performance of XGBoost over the 

random forest model across all panels. 

The model predictions in this analysis were more precise than those found in several 

studies (Sansone, 2019; Weissman, 2022; Oz et al., 2022; Selim & Rezk, 2023). Although my 

findings did not supersede the reported accuracies of the Chicago on-track indicator 

(Allensworth et al., 2013) or the Growth Mixture Model approach (Bowers & Sprott, 2012a), I 

contend that my dissertation cannot be directly compared to the aforementioned studies. The 

Allensworth et al. (2013) study included detailed middle school coursework data, such as course 

grades and GPA, while the Bowers & Sprott (2012a) study included 9th grade GPA, a well-

established predictor of high school completion and even postsecondary success. Because this 

analysis does not examine 9th grade GPA or include coursework data, the predictive power of 

models in this study cannot be directly compared to theirs. 

5.2.2 Discussion of algorithmic fairness 

Exploration of the second research question finds that all models, regardless of the level 

of imbalance in the training data, disproportionately misclassify student subgroups based on their 

English learner status, race/ethnicity, disability status. My examination of two models, the 

undersampled XGboost and undersampled logistic regression, reveal that the logistic regression 

provides a more “balanced” model performance in ensuring that between non-protected groups 

and protected groups of an attribute (e.g., students without a disability and students with an 

identified disability) are similar. However, this comes at a penalty of the logistic regression 

exhibiting higher misclassification rates for both non-protected and protected subgroups. Based 

on these results, I argue that the undersampled XGBoost model is a 'safer' choice because it 

demonstrates lower misclassification rates compared to the undersampled logistic regression 
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model. Recall that the backfire of Wisconsin’s early warning system, which disproportionately 

mislabeled Black and Hispanic students as “exiting early”, was due to high misclassification 

rates. While the models in this analysis do not misclassify as high as Wisconsin’s model, I 

contend that the XGboost model still exhibits algorithmic bias, as its predictions for many 

subgroups remain unsatisfactory. 

 The lack of equitable predictions for English learner, disability, and race/ethnicity 

subgroups warrants further investigation. If this prediction model were to have application in a 

school, district, or state setting, I propose that students with these protected attributes should be 

excluded from the analytic sample. Instead, separate models should be developed for each 

specific student subgroup, allowing for more tailored and careful consideration of their unique 

needs and challenges. This approach would ensure that these groups are not overlooked and that 

predictions are more accurately aligned with their educational contexts. 

Further investigation is needed to understand why both the random forest model and 

XGboost models exhibit similar bias issues in the ABROCA analysis, especially for English 

learners and economic disadvantage. Given that the ABROCA statistics are independent of a 

single decision threshold and rather aggregate model performance across all thresholds, one 

hypothesis I have is that certain cutoff values in the XGBoost model might lead to significant 

misclassification of students within these protected attributes. This could, in turn, amplify the 

bias observed in the difference in AUC values. 

5.2.3 Discussion of model interpretation 

The third research question interpreted model findings for the five undersampled models. 

This question had two goals: to examine the extent of overlap in relevant predictors identified by 
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each model and to improve the explainability of model findings so that it is accessible to non-

technical audiences. 

The findings reveal a converged narrative where the models generally identified and 

ranked predictors similarly. The models are in agreement that student age, middle school 

absences (especially being chronically absent) and economic disadvantage are the strongest 

predictors of early exit. With the exception of 7th and 8th grade absence rates, the features 

identified by the XGboost model were also identified in the three regression-based models, 

indicating strong overlap. Moreover, XGboost provides sparsity in its selection of model 

features, whereas ridge regression provided the greatest number of predictors associated with 

early exit. 

New post-hoc approaches, like Shapley Additive Explanations (SHAP) plots, have 

enhanced the explainability of complex machine learning models. One key advantage of SHAP 

plots is that they provide insights similar to those provided by regressions. The mean SHAP 

values act as coefficients for each model feature, enabling users to calculate the likelihood of a 

student exiting early. A further examination of the undersampled XGboost model with a SHAP 

plot reveals similar ranking of features that were used to optimize predictions, reinforcing the 

presence of student age and chronic absence in a middle grade in making accurate predictions. 

The SHAP plot, however, depicts the large variance in age and absence rates, suggesting that the 

associations between these features and early exit are multifaceted. As described in the 5.1, the 

prioritization of continuous model features such as age should be interpreted with caution.  

5.3 Next steps 

There are several avenues to enhance or extend the work presented in this dissertation. One 

potential direction is exploring strategies to mitigate algorithmic bias, such as adjusting threshold 
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values for students in protected attributes, as demonstrated by Lee & Kizilec (2020). While this 

approach may not fully address all aspects of fairness at the same time, it offers a valuable 

starting point for considering additional methods to mitigate algorithmic bias. 

Second, it could be interesting to complement the use of supervised learning with 

clustering approaches. In particular, a growth mixture model (GMM) could be helpful in 

identifying multiple sub-populations and examining longitudinal differences within each sub-

population (similar to Bowers & Sprott, 2012). Assuming that the data contain sufficient 

information to separate students into distinct clusters, it would be interesting to identify and 

understand students whose school engagement declines during middle grades.  

Third, I acknowledge the additional value in including additional model features to 

understand math and reading proficiency. Although this dissertation does not examine math and 

reading scores as continuous measures, the inclusion of such features could improve model 

performance. Future work could further investigate math and reading proficiency by developing 

additional indicators of students whose math or reading scores are "slightly below" and "slightly 

above" the proficiency threshold. This feature could be instrumental in identifying students who 

may benefit from targeted academic interventions and support services and could also be used to 

evaluate the effectiveness of early warning systems. 

Fourth, this research should investigate prediction accuracy at a more localized level. 

Building on the analytic approach of Coleman (2021), it would be valuable to examine 

prediction accuracy across the counties in North Carolina.18 I hypothesize that, similar to 

Coleman (2021)’s findings, there may be significant variation in both the prediction accuracy 

 
18 In North Carolina most public school districts are county school units, meaning that the county board of education 

generally serves as the administrative unit of schools in its jurisdiction (North Carolina General Assembly, n.d.). 
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and the factors associated with early exit. Furthermore, it is likely that the findings derived from 

statewide early warning systems may not be generalized in most local contexts. 

Fifth, this topic would be greatly improved from the addition of studies that apply 

economic evaluation methods to better understand the impact of high school dropout prediction 

efforts. Specifically, studies that assess the cost-effectiveness of implementing early warning 

systems would provide invaluable insights into the economic benefits of such interventions. 

Additionally, examining the costs and benefits associated with resource allocation – particularly 

how resources are utilized before and after the implementation of an early warning system – 

could offer a clearer picture of its long-term financial implications. Such research could 

significantly strengthen the case for early warning systems as a tool for improving resource 

efficiency, demonstrating how proactive interventions not only support student success but also 

lead to more sustainable and cost-effective outcomes for schools, districts, and society at large. 

Sixth, future work can focus on the characteristics of students who were either under-

identified or overidentified by the model. This analysis could be initiated by providing detailed 

descriptive statistics that differentiate these two subgroups of students. Gaining a deeper 

understanding of students who have been over-identified is particularly valuable, as it can guide 

decision-makers in establishing an appropriate threshold for overidentification for the prediction 

model, ensuring that the model's predictions align with realistic educational contexts and 

outcomes. Conversely, investigating students who have been under-identified offers crucial 

insights into the diversity of students who exited early. Such an investigation would elucidate the 

types of students that the model is either able to predict accurately or, conversely, fail to identify 

as at-risk of early exit. Specifically, exploring these under-identified cases can provide a more 

nuanced understanding of the typology of high school dropouts that the model has both 
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successfully identified and overlooked.19 By delving into the size, composition, and 

characteristics of the dropout profiles proposed by Bowers & Sprott (2012b), researchers can 

uncover important nuances about at-risk student populations. These insights could ultimately 

inform the design of more tailored and effective intervention strategies that better address the 

needs of diverse at-risk populations (Menzer & Hampel, 2009; Bowers & Sprott, 2012a, 2012b; 

Ogresta et al., 2021). 

5.4 Additional work needed in the field 

Developing an effective early warning system involves much more than just developing a 

prediction model. There are several components that must be in place before developing an early 

warning system. I outline four prerequisites that should be met prior to the development of an 

early warning system: improving research data systems, helping schools and districts move 

towards evidence-based decision-making, establishing specific parameters for model accuracy 

and misclassification, and dealing with generalizability issues. 

First, schools, districts, and states should actively build equitable data infrastructures. 

Data systems should strive alignment with FAIR (Finding, Accessible, Interoperable, and 

Reusable) guiding principles (Bowers, & Choi, 2023). 

Second, school districts and systems should have research personnel who can make “data 

sense”, or those who are skilled in not only developing and refining prediction models but also in 

conveying findings to a non-technical audience. This includes building dashboards, creating data 

visualization, and collaboration with leaders to inform decision-making. (Schutt & O'Neil, 2013; 

Krumm & Bowers, 2022; Bowers, in press). Emphasis should be placed on building 

 
19 Bowers & Sprott (2012b) dispels the monolithic tale that students who drop out of high school share the same 

characteristics. The authors examine the typology of high school dropouts to categorize them into three subgroups: 

quiet, jaded, and involved. 
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comprehensibility of model findings, fostering dialogue among stakeholders, and guiding 

collaborative efforts to determine next steps for dropout prevention. There is a growing body of 

literature that encourages collaboration with leaders, stakeholders, and communities for which 

the system is designed to serve (Lee, 2018; Bowers & Krumm, 2021; Bowers, 2021a).20  

Third, when planning or refining an early warning system, schools, districts, and 

policymakers should establish a clear threshold for model accuracy. This helps promote 

transparency and accountability during model development. Furthermore, it ensures that the 

model meets key criteria, such as sensitivity (i.e., true positive rate) and specificity (i.e., false 

alarm rate), with particular attention to students in protected attributes. These discussions help 

minimize the risk of early warning system failures, like the one experienced in Wisconsin. 

The final area of focus that is needed in the field is model generalizability. In machine 

learning applications, the issue of generalizability is defined as the extent to which predictive 

models maintain their accuracy and validity across varying contexts, populations, and time 

periods. For instance, changes in educational conditions and student behavior observed since the 

COVID-19 pandemic could impact the factors that influence graduation outcomes. In this case, 

the prediction models developed in this dissertation may not hold validity if it were to predict 

early exit for students graduating in 2023. Although prior attempts to generalize early warning 

system findings across varied contexts have not been successful (Stuit et al., 2016; Coleman, 

2021), more work needs to be done to understand how early warning systems can adapt to 

changing education environments.  

  

 
20 An example of this is Hawn-Nelson et al. (2020)’s toolkit and guidance on how community stakeholders and data 

analysts can work together to build data systems that serve the community. 
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5.5 Dissertation summary 

There is growing public concern about the fairness of K-12 early warning systems. The 

2023 investigation of Wisconsin’s statewide early warning system revealed that the system 

disproportionately mislabeled students of color as “high-risk” and negatively influenced how 

teachers perceive these students. The challenge of providing fair predictions is further 

exacerbated by the increasing integration of artificial intelligence (AI) methods in educational 

settings, raising concerns about the interpretability of models for practitioners and stakeholders. 

As AI approaches become more prevalent in education, it is crucial to ensure that these methods 

are designed and implemented in ways that promote fairness and provide explanations of the 

decision-making process for complex AI models that are often labeled as “black box.”  

This dissertation uses North Carolina state longitudinal data to examine middle school 

engagement and predict the likelihood that a student will drop out of high school in either 9th or 

10th grade. Although I was able to develop models that demonstrate high predictive accuracy, the 

fairness analysis finds that these models are susceptible to model discrimination. It is important 

to note that the machines are not inherently biased, but are reflective of structural inequities in 

the education system (Baker & Hawn, 2021; Baker, 2023; Bowers, in press). 

The findings of this dissertation underscores the need to develop approaches to mitigate 

bias in the model development phase. As AI models are becoming increasingly integral to 

various public sectors, the field of data science is actively developing approaches to demystify 

and provide explanations for the decisions made by black box models. However, the work is far 

from complete. As methodologies continue to evolve, it is important to stay informed about the 

latest developments and incorporate new techniques that address emerging challenges. 
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Continuous monitoring and adaptation are essential to maintain the integrity and validity of early 

warning systems in public applications. 

This dissertation is a conceptual replication study that tests the same hypotheses across 

diverse settings and contexts. While this study leverages data from pre-pandemic school years, 

there is an urgent need to replicate these findings in post-pandemic environments. Given the 

significant impact of the pandemic on student engagement and the added challenges that have 

emerged, early warning systems have become an even more critical tool for schools and 

educational systems aiming to reengage at-risk students. The ongoing development, evaluation, 

and refinement of early warning systems can foster essential collaboration and dialogue among 

researchers, decision-makers, and policymakers. Such continued research will not only enhance 

the effectiveness of these systems but also ensure their adaptability to the evolving educational 

landscape in a post-pandemic world. 
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APPENDIX A: ADDITIONAL DESCRIPTIVE STATISTICS 

Table A1: Descriptive statistics for SMOTE minority and original minority instances 

  Students who exited early 

 Original train SMOTE train 

N 1,551 (1.7%) 86,856 (49.6%) 

Student characteristics   

Female 0.411 (0.492) 0.407 (0.451) 

Asian 0.006 (0.080) 0.004 (0.056) 

White 0.487 (0.500) 0.513 (0.479) 

Black 0.296 (0.457) 0.299 (0.438) 

Other race 0.082 (0.274) 0.063 (0.219) 

Economically disadvantaged 0.787 (0.409) 0.810 (0.352) 

Age 14.580 (0.682) 14.571 (0.611) 

IEP 0.284 (0.451) 0.273 (0.428) 

Ever had an IEP in a middle grade 0.322 (0.468) 0.304 (0.438) 

Limited English proficient 0.080 (0.271) 0.075 (0.256) 

Ever limited English proficient in 8th grade 0.095 (0.293) 0.087 (0.273) 

Urban 0.268 (0.443) 0.270 (0.418) 

Suburban 0.231 (0.422) 0.226 (0.394) 

Town 0.124 (0.330) 0.110 (0.287) 

Rural 0.376 (0.485) 0.394 (0.462) 

Academic information   

Not math proficient in 6th grade 0.433 (0.496) 0.421 (0.471) 

Not math proficient in 7th grade 0.468 (0.499) 0.459 (0.473) 

Not math proficient in 8th grade 0.892 (0.310) 0.908 (0.268) 

Not math proficient in all middle grades 0.295 (0.456) 0.300 (0.445) 

Not reading proficient in 6th grade 0.503 (0.500) 0.496 (0.482) 

Not reading proficient in 7th grade 0.567 (0.496) 0.561 (0.473) 

Not reading proficient in 8th grade 0.839 (0.367) 0.856 (0.327) 

Not reading proficient in all middle grades 0.391 (0.488) 0.401 (0.478) 

Attendance information   

Absence rate in 6th grade 0.103 (0.104) 0.100 (0.090) 

Absence rate in 7th grade 0.115 (0.113) 0.111 (0.099) 

Absence rate in 8th grade 0.136 (0.128) 0.133 (0.111) 

Chronically absent in 6th grade 0.230 (0.421) 0.210 (0.381) 

Chronically absent in 7th grade 0.309 (0.462) 0.297 (0.431) 

Chronically absent in 8th grade 0.428 (0.495) 0.426 (0.471) 

Ever chronically absent in a middle grade 0.598 (0.491) 0.583 (0.477) 

Chronically absent in all middle grades 0.088 (0.283) 0.081 (0.258) 

School mobility in 6th grade 0.019 (0.135) 1.013 (0.094) 

School mobility in 7th grade 0.020 (0.140) 1.014 (0.097) 

School mobility in 8th grade 0.050 (0.219) 1.040 (0.172) 

School mobility in a middle grade 0.401 (0.608) 1.359 (0.530) 

Discipline information   
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OSS in 6th grade 0.268 (0.443) 0.259 (0.415) 

OSS in 7th grade 0.349 (0.477) 0.348 (0.455) 

OSS in 8th grade 0.397 (0.489) 0.408 (0.472) 

OSS in a middle grade 0.575 (0.494) 0.571 (0.492) 

ISS in 6th grade 0.269 (0.444) 0.263 (0.419) 

ISS in 7th grade 0.337 (0.473) 0.332 (0.444) 

ISS in 8th grade 0.346 (0.476) 0.343 (0.445) 

ISS in a middle grade 0.442 (0.497) 0.435 (0.479) 

Ever suspended in a middle grade 0.687 (0.464) 0.674 (0.463) 

Notes: In the first row, N indicates the sample size and proportion of the train data represented by the subgroup. 

Standard errors are reported in other parentheses. Student characteristics are extracted from 8 th grade records. 

Detailed information about each indicator can be found in 3.5.2. 
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Table A2: Descriptive statistics for undersampled majority and original majority instances 

  Students who did not exit early 

 Original train Undersampled train 

N 88,165 (98.3%) 1,551 (50.0%) 

Student characteristics   

Female 0.505 (0.500) 0.500 (0.500) 

Asian 0.027 (0.162) 0.029 (0.168) 

White 0.540 (0.498) 0.533 (0.499) 

Black 0.264 (0.441) 0.275 (0.446) 

Other race 0.054 (0.227) 0.052 (0.221) 

Economically disadvantaged 0.446 (0.497) 0.427 (0.495) 

Age 13.693 (0.464) 13.693 (0.456) 

IEP 0.114 (0.318) 0.108 (0.311) 

Ever had an IEP in a middle grade 0.137 (0.344) 0.132 (0.338) 

Limited English proficient 0.045 (0.208) 0.049 (0.216) 

Ever limited English proficient in 8th grade 0.055 (0.229) 0.058 (0.234) 

Urban 0.267 (0.442) 0.270 (0.444) 

Suburban 0.240 (0.427) 0.248 (0.432) 

Town 0.100 (0.300) 0.090 (0.286) 

Rural 0.393 (0.488) 0.393 (0.488) 

Academic information   

Not math proficient in 6th grade 0.146 (0.353) 0.139 (0.346) 

Not math proficient in 7th grade 0.142 (0.349) 0.136 (0.343) 

Not math proficient in 8th grade 0.618 (0.486) 0.628 (0.483) 

Not math proficient in all middle grades 0.089 (0.284) 0.092 (0.288) 

Not reading proficient in 6th grade 0.202 (0.402) 0.196 (0.397) 

Not reading proficient in 7th grade 0.272 (0.445) 0.275 (0.447) 

Not reading proficient in 8th grade 0.554 (0.497) 0.542 (0.498) 

Not reading proficient in all middle grades 0.165 (0.371) 0.155 (0.362) 

Attendance information   

Absence rate in 6th grade 0.034 (0.039) 0.033 (0.039) 

Absence rate in 7th grade 0.035 (0.041) 0.033 (0.038) 

Absence rate in 8th grade 0.041 (0.044) 0.039 (0.041) 

Chronically absent in 6th grade 0.045 (0.207) 0.041 (0.197) 

Chronically absent in 7th grade 0.048 (0.214) 0.045 (0.208) 

Chronically absent in 8th grade 0.068 (0.252) 0.063 (0.242) 

Ever chronically absent in a middle grade 0.122 (0.327) 0.104 (0.305) 

Chronically absent in all middle grades 0.007 (0.084) 0.007 (0.084) 

School mobility in 6th grade 0.005 (0.071) 1.006 (0.080) 

School mobility in 7th grade 0.006 (0.076) 1.006 (0.076) 

School mobility in 8th grade 0.010 (0.100) 1.006 (0.076) 

School mobility in a middle grade 0.207 (0.447) 1.190 (0.425) 

Discipline information   
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OSS in 6th grade 0.078 (0.268) 0.073 (0.260) 

OSS in 7th grade 0.088 (0.283) 0.072 (0.259) 

OSS in 8th grade 0.091 (0.288) 0.086 (0.281) 

OSS in a middle grade 0.180 (0.384) 0.164 (0.371) 

ISS in 6th grade 0.101 (0.301) 0.090 (0.287) 

ISS in 7th grade 0.125 (0.331) 0.121 (0.326) 

ISS in 8th grade 0.124 (0.329) 0.108 (0.310) 

ISS in a middle grade 0.188 (0.391) 0.171 (0.377) 

Ever suspended in a middle grade 0.291 (0.454) 0.275 (0.446) 

Notes: In the first row, N indicates the sample size and proportion of the train data 

represented by the class. Standard errors are reported in other parentheses. Student 

characteristics are extracted from 8th grade records. Detailed information about each 

indicator can be found in 3.5.2. 
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APPENDIX B: CODE AND OUTPUT 

Figure B1: Code for research question 1 

Data cleaning 

#cleaning train data 
train <- read.csv("D:/NCERDC_DATA/Alam/ML/Training sample/Data/trainingpanel.csv") 
summary(train) 
# str(train) this showed that almost no variables were factors 
train <- train %>% mutate_if(is.integer, as.factor) 
train = subset(train, select = -c(mastid) )  
train <- train %>% as_tibble  %>% mutate(across(c(40:43), as.numeric)) 
str(train) 
 
#cleaning test data 
test <- read.csv("D:/NCERDC_DATA/Alam/ML/Testing sample/Data/testingpanel.csv") 
test <- test %>% mutate_if(is.integer, as.factor) 
test = subset(test, select = -c(mastid) )  
train <- train %>% as_tibble  %>% mutate(across(c(40:43), as.numeric)) 
str(test) 

 
write.csv(train,'train.csv', row.names=FALSE) 
write.csv(test,'test.csv', row.names=FALSE) 

Model 1: Logistic regression 

train <- read.csv("train.csv") 
test <- read.csv("test.csv") 
 
# Fit the logistic regression model 
log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, white, 

other_race)), family = 'binomial') 
summary(log1.m) 

##  
## Call: 
## glm(formula = dropout ~ ., family = "binomial", data = subset(train,  
##     select = -c(female, hispanic, asian, black, white, other_race))) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.7671  -0.1243  -0.0764  -0.0527   3.8438   
##  
## Coefficients: (1 not defined because of singularities) 
##                              Estimate Std. Error z value Pr(>|z|)     
## (Intercept)                -33.741987   0.801317 -42.108  < 2e-16 *** 
## ever_stsusp_middle          10.940859 145.265122   0.075 0.939963     
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## ever_ltsusp_middle           0.254953   0.343387   0.742 0.457805     
## ever_OSS_6                  -0.052846   0.093110  -0.568 0.570327     
## ever_OSS_7                   0.154329   0.091206   1.692 0.090626 .   
## ever_OSS_8                   0.296006   0.093909   3.152 0.001621 **  
## ever_OSS_middle            -10.797742 145.265154  -0.074 0.940747     
## ever_ISS_middle              0.055268   0.127531   0.433 0.664744     
## ever_ISS_6                   0.102078   0.110516   0.924 0.355671     
## ever_ISS_7                   0.068679   0.083340   0.824 0.409893     
## ever_ISS_8                   0.236480   0.077540   3.050 0.002290 **  
## not_math_proficient_6        0.309266   0.100846   3.067 0.002164 **  
## not_math_proficient_7        0.546723   0.093213   5.865 4.48e-09 *** 
## not_math_proficient_8        0.309054   0.112036   2.759 0.005806 **  
## no_math_proficiency_middle  -0.452462   0.135109  -3.349 0.000811 *** 
## not_read_proficient_6        0.451764   0.112643   4.011 6.06e-05 *** 
## not_read_proficient_7        0.054599   0.092597   0.590 0.555437     
## not_read_proficient_8        0.152022   0.098090   1.550 0.121184     
## no_read_proficiency_middle  -0.537957   0.136329  -3.946 7.95e-05 *** 
## eds                          0.414365   0.073239   5.658 1.53e-08 *** 
## age_eighthfall1              1.925457   0.050317  38.267  < 2e-16 *** 
## ever_swd                     0.051677   0.170880   0.302 0.762336     
## swd_8                       -0.387899   0.177370  -2.187 0.028746 *   
## ever_lep                     0.406953   0.249231   1.633 0.102504     
## lep_8                       -0.450850   0.269412  -1.673 0.094237 .   
## absence_rate_6               1.767911   0.640226   2.761 0.005756 **  
## absence_rate_7               2.610089   0.594187   4.393 1.12e-05 *** 
## absence_rate_8               5.207350   0.535821   9.718  < 2e-16 *** 
## chrabsent_6                  0.249767   0.136201   1.834 0.066682 .   
## chrabsent_7                  0.293176   0.119291   2.458 0.013985 *   
## chrabsent_8                  0.375300   0.133803   2.805 0.005034 **  
## ever_chrabsent_middle        0.262627   0.147092   1.785 0.074186 .   
## chrabsent_middle            -0.399342   0.206058  -1.938 0.052622 .   
## school_mobility_middle       0.193665   0.058851   3.291 0.000999 *** 
## school_mobility_8            0.225752   0.166380   1.357 0.174831     
## school_mobility_7           -0.080500   0.234909  -0.343 0.731835     
## school_mobility_6            0.279470   0.239537   1.167 0.243327     
## urban                       -0.006347   0.074854  -0.085 0.932428     
## suburban                    -0.050352   0.078166  -0.644 0.519466     
## town                         0.214412   0.098451   2.178 0.029417 *   
## rural                              NA         NA      NA       NA     
## ever_suspended               0.182487   0.132669   1.376 0.168973     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 15662.2  on 89715  degrees of freedom 
## Residual deviance:  9830.8  on 89675  degrees of freedom 
## AIC: 9912.8 
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##  
## Number of Fisher Scoring iterations: 13 

# Predict on the TEST data 
predict_log <- predict(log1.m, test[,-1], type = 'response') 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 
## prediction from a rank-deficient fit may be misleading 

# Create a prediction object for ROCR 
pred <- prediction(predict_log, test$dropout) 
 
# Create a performance object for ROC curve 
perf_log <- performance(pred, "tpr", "fpr") 
# Plot the first ROC curve (perf_log) 
plot(perf_log, colorize = TRUE, main = "ROC Curve") 

 

# AuC score 
auc <- performance(pred, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9044747 

# Convert predictions to factors (assuming binary classification) 
predict_log_class <- as.factor(ifelse(predict_log >= 0.2, 1, 0)) 
test$dropout <- as.factor(test$dropout) 



 

145 

 

 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_log_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 92184  1927 
##          1   489   477 
##                                            
##                Accuracy : 0.9746           
##                  95% CI : (0.9736, 0.9756) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 0.6031           
##                                            
##                   Kappa : 0.2725           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.198419         
##             Specificity : 0.994723         
##          Pos Pred Value : 0.493789         
##          Neg Pred Value : 0.979524         
##              Prevalence : 0.025285         
##          Detection Rate : 0.005017         
##    Detection Prevalence : 0.010160         
##       Balanced Accuracy : 0.596571         
##                                            
##        'Positive' Class : 1                
##  

Preparing for Lasso and Ridge 

train <- read.csv("train.csv") 
test <- read.csv("test.csv") 
 
train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
 
y.train = train$dropout %>% unlist() %>% as.numeric() 
y.test = test$dropout %>% unlist() %>% as.numeric() 
x.train = model.matrix(dropout~., train)[,-1]  
x.test = model.matrix(dropout~., test)[,-1] 

 
dim(x.train) 
dim(x.test) 
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write.csv(x.train,'x.train.csv', row.names=FALSE) 
write.csv(x.test,'x.test.csv', row.names=FALSE) 
write.csv(y.train,'y.train.csv', row.names=FALSE) 
write.csv(y.test,'y.test.csv', row.names=FALSE) 

Model 2: Lasso 

#CV to estimate best lambda 
set.seed(2023) 
cv.lasso <- cv.glmnet(x.train, y.train, alpha = 1, family='binomial') # Fit lasso regression model on 

training data 
#Display MSE vs log-lambda plot 
plot(cv.lasso) # Draw plot of training MSE as a function of lambda 

 

# ROC analysis to identify optimal threshold 
lasso.pred <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 
# Ensure lasso.pred is a numeric vector 
lasso.pred <- as.numeric(lasso.pred) 
print(length(lasso.pred))  # Check length of lasso.pred 

## [1] 95077 

#Create ROC curve 
pred_lasso <- prediction(lasso.pred, y.test) 
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y.test <- as.matrix(y.test) 
perf_lasso <- performance(pred_lasso , "tpr", "fpr") 
plot(perf_lasso, colorize=TRUE)  

 

# AuC score 
auc <- performance(pred_lasso, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9070521 

# Convert predictions to factors  
predict_lasso_class <- as.factor(ifelse(lasso.pred >= 0.2, "1", "0")) 
# Ensure test$dropout is a factor with the same levels 
test$dropout <- as.factor(test$dropout) 
levels(predict_lasso_class) <- levels(test$dropout)  # Ensure factor levels match 
 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_lasso_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 92204  1940 
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##          1   469   464 
##                                            
##                Accuracy : 0.9747           
##                  95% CI : (0.9736, 0.9757) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 0.5465           
##                                            
##                   Kappa : 0.2677           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.193012         
##             Specificity : 0.994939         
##          Pos Pred Value : 0.497320         
##          Neg Pred Value : 0.979393         
##              Prevalence : 0.025285         
##          Detection Rate : 0.004880         
##    Detection Prevalence : 0.009813         
##       Balanced Accuracy : 0.593975         
##                                            
##        'Positive' Class : 1                
##  

Model 3: Ridge regression 

#CV to estimate best lambda 
set.seed(2023) 
cv.ridge <- cv.glmnet(x.train, y.train, alpha = 0, family='binomial') # Fit ridge regression model on 

training data 
#Display MSE vs log-lambda plot 
plot(cv.ridge) # Draw plot of training MSE as a function of lambda 
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ridge.pred <- predict(cv.ridge, newx=x.test, s = "lambda.min", type="response") 
# Ensure lasso.pred is a numeric vector 
ridge.pred <- as.numeric(ridge.pred) 
print(length(ridge.pred))  # Check length of lasso.pred 

## [1] 95077 

# Extract the coefficients at the best lambda (lambda.min or lambda.1se) 
ridge.coefs <- coef(cv.ridge, s = "lambda.min")  # or use lambda.1se for a more regularized solution 

 
# View the coefficients 
print(ridge.coefs) 

## 42 x 1 sparse Matrix of class "dgCMatrix" 
##                                      s1 
## (Intercept)                -29.97623269 
## ever_stsusp_middle           0.11726085 
## ever_ltsusp_middle           0.22822519 
## ever_OSS_6                  -0.02043158 
## ever_OSS_7                   0.14816966 
## ever_OSS_8                   0.26383650 
## ever_OSS_middle              0.10679842 
## ever_ISS_middle              0.10545648 
## ever_ISS_6                   0.07008450 
## ever_ISS_7                   0.07658856 
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## ever_ISS_8                   0.20170969 
## not_math_proficient_6        0.24231139 
## not_math_proficient_7        0.42358656 
## not_math_proficient_8        0.22506985 
## no_math_proficiency_middle  -0.25729181 
## not_read_proficient_6        0.25829594 
## not_read_proficient_7        0.04419397 
## not_read_proficient_8        0.16275189 
## no_read_proficiency_middle  -0.26823950 
## eds                          0.34786841 
## age_eighthfall1              1.66895716 
## ever_swd                    -0.02462989 
## swd_8                       -0.18973493 
## ever_lep                     0.17261443 
## lep_8                       -0.12728764 
## absence_rate_6               2.12497782 
## absence_rate_7               2.70725959 
## absence_rate_8               4.67291775 
## chrabsent_6                  0.19859994 
## chrabsent_7                  0.26235226 
## chrabsent_8                  0.37056709 
## ever_chrabsent_middle        0.30418184 
## chrabsent_middle            -0.32989299 
## school_mobility_middle       0.16607225 
## school_mobility_8            0.24358069 
## school_mobility_7           -0.02817470 
## school_mobility_6            0.27816572 
## urban                       -0.02107455 
## suburban                    -0.04304323 
## town                         0.17340319 
## rural                       -0.01534907 
## ever_suspended               0.14243790 

# To view the coefficients in a more readable format (as a dataframe): 
ridge.coefs_df <- as.data.frame(as.matrix(ridge.coefs)) 
print(ridge.coefs[ridge.coefs != 0]) # Display only non-zero coefficients 

## <sparse>[ <logic> ]: .M.sub.i.logical() maybe inefficient 

##  [1] -29.97623269   0.11726085   0.22822519  -0.02043158   0.14816966 
##  [6]   0.26383650   0.10679842   0.10545648   0.07008450   0.07658856 
## [11]   0.20170969   0.24231139   0.42358656   0.22506985  -0.25729181 
## [16]   0.25829594   0.04419397   0.16275189  -0.26823950   0.34786841 
## [21]   1.66895716  -0.02462989  -0.18973493   0.17261443  -0.12728764 
## [26]   2.12497782   2.70725959   4.67291775   0.19859994   0.26235226 
## [31]   0.37056709   0.30418184  -0.32989299   0.16607225   0.24358069 
## [36]  -0.02817470   0.27816572  -0.02107455  -0.04304323   0.17340319 
## [41]  -0.01534907   0.14243790 
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ridge.coefs_df <- ridge.coefs_df %>% 
  arrange(desc(s1)) 
print(ridge.coefs_df) 

##                                      s1 
## absence_rate_8               4.67291775 
## absence_rate_7               2.70725959 
## absence_rate_6               2.12497782 
## age_eighthfall1              1.66895716 
## not_math_proficient_7        0.42358656 
## chrabsent_8                  0.37056709 
## eds                          0.34786841 
## ever_chrabsent_middle        0.30418184 
## school_mobility_6            0.27816572 
## ever_OSS_8                   0.26383650 
## chrabsent_7                  0.26235226 
## not_read_proficient_6        0.25829594 
## school_mobility_8            0.24358069 
## not_math_proficient_6        0.24231139 
## ever_ltsusp_middle           0.22822519 
## not_math_proficient_8        0.22506985 
## ever_ISS_8                   0.20170969 
## chrabsent_6                  0.19859994 
## town                         0.17340319 
## ever_lep                     0.17261443 
## school_mobility_middle       0.16607225 
## not_read_proficient_8        0.16275189 
## ever_OSS_7                   0.14816966 
## ever_suspended               0.14243790 
## ever_stsusp_middle           0.11726085 
## ever_OSS_middle              0.10679842 
## ever_ISS_middle              0.10545648 
## ever_ISS_7                   0.07658856 
## ever_ISS_6                   0.07008450 
## not_read_proficient_7        0.04419397 
## rural                       -0.01534907 
## ever_OSS_6                  -0.02043158 
## urban                       -0.02107455 
## ever_swd                    -0.02462989 
## school_mobility_7           -0.02817470 
## suburban                    -0.04304323 
## lep_8                       -0.12728764 
## swd_8                       -0.18973493 
## no_math_proficiency_middle  -0.25729181 
## no_read_proficiency_middle  -0.26823950 
## chrabsent_middle            -0.32989299 
## (Intercept)                -29.97623269 
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write.csv(ridge.coefs_df, "ridge.coefs.csv", row.names = TRUE) 
 

 
#Create ROC curve 
pred_ridge <- prediction(ridge.pred, y.test) 
y.test <- as.matrix(y.test) 
perf_ridge <- performance(pred_ridge , "tpr", "fpr") 
#plot_ridge <- plot(perf_ridge, colorize=TRUE) #lasso prob threshold should be 0.2 
 
# AuC 
perf_ridge <- performance(pred_ridge,"auc") 
auc <- as.numeric(perf_ridge@y.values) 
auc 

## [1] 0.908553 

# Convert predictions to factors  
predict_ridge_class <- as.factor(ifelse(ridge.pred >= 0.2, "1", "0")) 
# Ensure test$dropout is a factor with the same levels 
test$dropout <- as.factor(test$dropout) 
levels(predict_ridge_class) <- levels(test$dropout)  # Ensure factor levels match 
 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_ridge_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 92280  1990 
##          1   393   414 
##                                            
##                Accuracy : 0.9749           
##                  95% CI : (0.9739, 0.9759) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 0.3369           
##                                            
##                   Kappa : 0.2483           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.172213         
##             Specificity : 0.995759         
##          Pos Pred Value : 0.513011         
##          Neg Pred Value : 0.978890         
##              Prevalence : 0.025285         
##          Detection Rate : 0.004354         
##    Detection Prevalence : 0.008488         
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##       Balanced Accuracy : 0.583986         
##                                            
##        'Positive' Class : 1                
##  

f1_score <- cm$byClass["F1"] 
print(f1_score) 

##        F1  
## 0.2578636 

Model 4: Random forest 

train <- read.csv("train.csv") 
test <- read.csv("test.csv") 
train_nodem = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
train_nodem$dropout <- as.factor(train_nodem$dropout) 
 
set.seed(2023) 
RF.dropout <- randomForest(dropout ~ ., data = train_nodem, ntree = 100, importance = TRUE) 

 

 
# Predict on the TEST data 
rf.pred <- predict(RF.dropout, newdata = test[,-1], type = "prob")[,2] 

 
# Create a prediction object for ROCR 
rf_pr_test <- prediction(rf.pred, test$dropout) 
 
# Create a performance object for ROC curve 
perf_rf <- performance(rf_pr_test, "tpr", "fpr") 
 
# Plot the ROC curve 
plot(perf_rf, colorize = TRUE, main = "ROC Curve") 
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# Calculate AUC 
auc <- performance(rf_pr_test, measure = "auc") 
print(auc@y.values[[1]]) 

## [1] 0.8521343 

# Convert predictions to binary class (assuming binary classification) 
predict_rf_class <- as.factor(ifelse(rf.pred >= 0.22, 1, 0)) 
test$dropout <- as.factor(test$dropout) 

 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_rf_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 91379  1652 
##          1  1294   752 
##                                            
##                Accuracy : 0.969            
##                  95% CI : (0.9679, 0.9701) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
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##                                            
##                   Kappa : 0.3222           
##                                            
##  Mcnemar's Test P-Value : 4.789e-11        
##                                            
##             Sensitivity : 0.312812         
##             Specificity : 0.986037         
##          Pos Pred Value : 0.367546         
##          Neg Pred Value : 0.982242         
##              Prevalence : 0.025285         
##          Detection Rate : 0.007909         
##    Detection Prevalence : 0.021519         
##       Balanced Accuracy : 0.649424         
##                                            
##        'Positive' Class : 1                
##  

Preparing for XGboost 

train <- read.csv("train.csv") 
test <- read.csv("test.csv") 
str(train) 
str(test) 
 
train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
 
y.train = train$dropout %>% unlist() %>% as.numeric() 
y.test = test$dropout %>% unlist() %>% as.numeric() 
x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  
x.test = model.matrix(dropout~., test)[,-1] 

 
# Check the structure of data 
str(x.train) 
str(x.test) 
str(y.train) 
str(y.test) 

 
# eta controls the learning rate, which scales the contribution of each tree. A smaller value (e.g., 0.1) can 

lead to more robust models but requires more boosting rounds. The default value of 0.3 is more 

aggressive 

 
# eval_metric specifies the metric to evaluate during training. The detailed parameter set explicitly 

specifies "logloss", which is useful for binary classification tasks. 

 
# gamma specifies the minimum loss reduction required to make a further partition. Setting gamma to 0 

means no regularization is applied to the tree splitting, which may lead to more complex trees. 
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# min_child_weight is the minimum sum of instance weight (hessian) needed in a child. It controls 

overfitting; higher values prevent the model from learning overly specific patterns. 

 
# Data preparation 
dtrain <- xgb.DMatrix(data = x.train, label = y.train) 
dtest <- xgb.DMatrix(data = x.test, label = y.test) 
ts_label <- test$dropout 
 

 
# Initial parameter setup (if needed) 
initial_params <- list( 
  booster = "gbtree", 
  objective = "binary:logistic", 
  eval_metric = "logloss", 
  eta = 0.3, 
  max_depth = 6, gamma = 3 
) 

 
# Cross-validation to find optimal rounds of boosting 
cv_results <- xgb.cv( 
  params = initial_params, 
  data = dtrain, 
  nrounds = 100, 
  nfold = 5, 
  early_stopping_rounds = 20, 
  verbose = 1 
) 
 
# Extract the Best Number of Rounds 
best_nrounds <- cv_results$best_iteration 
 
# Train the Final Model with Optimal Parameters 
set.seed(2023) 
final_model <- xgb.train( 
  params = initial_params, 
  data = dtrain, 
  nrounds = best_nrounds 
) 
 
# Grid search for hyperparameter tuning 
search_grid <- expand.grid( 
  max_depth = c(3, 6), 
  eta = c(0.01, 0.1), 
  colsample_bytree = c(0.5, 0.7) 
) 
 
best_auc <- Inf  # Use Inf for minimization 
best_params <- list() 
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for (i in 1:nrow(search_grid)) { 
  params <- list( 
    objective = "binary:logistic", 
    eval_metric = "logloss", 
    max_depth = search_grid$max_depth[i], 
    eta = search_grid$eta[i], 
    colsample_bytree = search_grid$colsample_bytree[i] 
  ) 
   
  cv_results <- xgb.cv( 
    params = params, 
    data = dtrain, 
    nfold = 5, 
    nrounds = 100, 
    early_stopping_rounds = 10, 
    verbose = 1 
  ) 
   
  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 

   
  if (mean_logloss < best_auc) { 
    best_auc <- mean_logloss 
    best_params <- params 
    best_nrounds <- cv_results$best_iteration 
  } 
} 

Model 5: XGboost 

# Train the final model with the best parameters 
dtest <- xgb.DMatrix(data = x.test, label = y.test) 
set.seed(2023) 
xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 10, nrounds = best_nrounds) 

## [1]  val-logloss:0.604779    train-logloss:0.603645  
## [11] val-logloss:0.222354    train-logloss:0.209417  
## [21] val-logloss:0.125100    train-logloss:0.104524  
## [31] val-logloss:0.095889    train-logloss:0.071148  
## [41] val-logloss:0.087154    train-logloss:0.060079  
## [51] val-logloss:0.084379    train-logloss:0.056018  
## [61] val-logloss:0.083503    train-logloss:0.054327  
## [71] val-logloss:0.083082    train-logloss:0.053517  
## [81] val-logloss:0.082899    train-logloss:0.052925  
## [91] val-logloss:0.082737    train-logloss:0.052555  
## [100]    val-logloss:0.082580    train-logloss:0.052259 
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#model prediction 
xgbpred <- predict (xgb1,dtest) 
xgbpred <- ifelse (xgbpred > 0.18,"1", "0") 
 
y.test <- as.factor(y.test) 
xgbpred <- as.factor(xgbpred) 
y.test = test$dropout %>% unlist() %>% as.factor() 
 
predict_xgboost <- predict(xgb1, dtest, type = 'response') 
pred_xgboost <- prediction(predict_xgboost, test$dropout) 
# Create a performance object for ROC curve 
perf_xgboost <- performance(pred, "tpr", "fpr") 
# Plot the first ROC curve (perf_log) 
plot(perf_xgboost, colorize = TRUE, main = "ROC Curve") 

 

# Create confusion matrix 
cm <- confusionMatrix(data = xgbpred, reference = y.test, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 91447  1621 
##          1  1226   783 
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##                                           
##                Accuracy : 0.9701          
##                  95% CI : (0.969, 0.9711) 
##     No Information Rate : 0.9747          
##     P-Value [Acc > NIR] : 1               
##                                           
##                   Kappa : 0.3397          
##                                           
##  Mcnemar's Test P-Value : 1.534e-13       
##                                           
##             Sensitivity : 0.325707        
##             Specificity : 0.986771        
##          Pos Pred Value : 0.389746        
##          Neg Pred Value : 0.982583        
##              Prevalence : 0.025285        
##          Detection Rate : 0.008235        
##    Detection Prevalence : 0.021130        
##       Balanced Accuracy : 0.656239        
##                                           
##        'Positive' Class : 1               
##  

auc <- performance(pred_xgboost, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9090673 

plotting all ROC curves in one graph 

x = seq(1,10,1) 
y = 1.5*x 
windowsFonts(A = windowsFont("Times New Roman")) 
plot(x, y, 
  family="A", 
  main = "title", 
  font=2) 
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windowsFonts(Times=windowsFont("Times New Roman")) 

 
# Set the font to Times New Roman in the plots 
plot(perf_log, colorize = FALSE, col = "blue", family = "Times New Roman") 

## Warning in title(...): font family not found in Windows font database 
 
## Warning in title(...): font family not found in Windows font database 

# Add the second ROC curve for perf_lasso with a different color 
plot(perf_lasso, colorize = FALSE, col = "orange", add = TRUE, family = "Times New Roman") 
#plot(perf_ridge, colorize = FALSE, col = "brown", add = TRUE, family = "Times New Roman") 
plot(perf_rf, colorize = FALSE, col = "black", add = TRUE, family = "Times New Roman") 
plot(perf_xgboost, colorize = FALSE, col = "red", add = TRUE, family = "Times New Roman") 
 
# Add a legend to the plot with Times New Roman font 
legend("bottomright",  # Position of the legend (can change to topright, top, etc.) 
       legend = c("Logistic Regression", "Lasso Regression", "Ridge Regression", "Random Forest", 

"XGboost"),   
       col = c("blue", "orange", "brown", "black", "red"),  # Colors of the curves 
       lty = 1,  # Line type for the curves (solid line) 
       cex = 0.8)  # Text size for the legend 



 

161 

 

 

     #  family = "Times New Roman")  # Font family for the legend 

Oversampling train data (SMOTE) 

#trying SMOTE 
library(smotefamily) 
train <- read.csv("train.csv") 
library(caret) 
library(nnet) 
# Convert dropout to a factor 
train$dropout <- as.numeric(train$dropout) 
# Apply SMOTE 
set.seed(123) # For reproducibility 
smote_result <- SMOTE(X = train, target = train$dropout,  
                      K = 4, dup_size = 0) 
 
# Combine the SMOTE result into a new data frame 
smotetrain <- data.frame(smote_result$data) 
 
# Check the distribution of the target variable after SMOTE 
table(smotetrain$dropout) 

##  
##     0     1  
## 88165 86856 
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table(train$dropout) 

##  
##     0     1  
## 88165  1551 

smotetrain <- smotetrain[,-49]  
write.csv(smotetrain,"oversampletrain.csv", row.names=FALSE) 

Model 6: SMOTE logistic regression 

smotetrain <- read.csv("oversampletrain.csv") 
test <- read.csv("test.csv") 
 
# Fit the logistic regression model 
log1.m <- glm(dropout ~ ., data = subset(smotetrain, select = -c(female, hispanic, asian, black, white, 

other_race)), family = 'binomial') 
 
# Predict on the TEST data 
predict_log <- predict(log1.m, test[,-1], type = 'response') 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 
## prediction from a rank-deficient fit may be misleading 

# Create a prediction object for ROCR 
pred <- prediction(predict_log, test$dropout) 
 
# Create a performance object for ROC curve 
perf_log <- performance(pred, "tpr", "fpr") 
 
# Plot the ROC curve 
plot(perf_log, colorize = TRUE, main = "ROC Curve") 
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# AuC score 
auc <- performance(pred, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9027851 

# Convert predictions to factors (assuming binary classification) 
predict_log_class <- as.factor(ifelse(predict_log >= 0.5, 1, 0)) 
test$dropout <- as.factor(test$dropout) 

 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_log_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 77366   456 
##          1 15307  1948 
##                                            
##                Accuracy : 0.8342           
##                  95% CI : (0.8318, 0.8366) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
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##                                            
##                   Kappa : 0.1609           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.81032          
##             Specificity : 0.83483          
##          Pos Pred Value : 0.11289          
##          Neg Pred Value : 0.99414          
##              Prevalence : 0.02528          
##          Detection Rate : 0.02049          
##    Detection Prevalence : 0.18148          
##       Balanced Accuracy : 0.82257          
##                                            
##        'Positive' Class : 1                
##  

Preparing for SMOTE lasso and ridge 

train <- read.csv("oversampletrain.csv") 
test <- read.csv("test.csv") 
 

 
train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
 
y.train = train$dropout %>% unlist() %>% as.numeric() 
y.test = test$dropout %>% unlist() %>% as.numeric() 
x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  
x.test = model.matrix(dropout~., test)[,-1] 

 
dim(x.train) 
dim(x.test) 

 

 
write.csv(x.train,'x.train.csv', row.names=FALSE) 
write.csv(x.test,'x.test.csv', row.names=FALSE) 
write.csv(y.train,'y.train.csv', row.names=FALSE) 
write.csv(y.test,'y.test.csv', row.names=FALSE) 

Model 7: SMOTE lasso regression 

https://www.r-bloggers.com/2021/05/class-imbalance-handling-imbalanced-data-in-r/ 

set.seed(2023) 
cv.lasso <- cv.glmnet(x.train, y.train, alpha = 1, family='binomial') # Fit lasso regression model on 

training data 

https://www.r-bloggers.com/2021/05/class-imbalance-handling-imbalanced-data-in-r/
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#Display MSE vs log-lambda plot 
plot(cv.lasso) # Draw plot of training MSE as a function of lambda 

 

# ROC analysis to identify optimal threshold 
lasso.pred <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 
# Ensure lasso.pred is a numeric vector 
lasso.pred <- as.numeric(lasso.pred) 
print(length(lasso.pred))  # Check length of lasso.pred 

## [1] 95077 

#Create ROC curve 
pred_lasso <- prediction(lasso.pred, y.test) 
y.test <- as.matrix(y.test) 
perf_lasso <- performance(pred_lasso , "tpr", "fpr") 
#plot(perf_lasso, colorize=TRUE) #lasso prob threshold should be 0.2 
#abline(h = 0.8, col = "red", lty = 2)  # Add threshold line 
 
# AuC score 
auc <- performance(pred_lasso, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9051221 

# Convert predictions to factors  
predict_lasso_class <- as.factor(ifelse(lasso.pred >= 0.4, "1", "0")) 
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# Ensure test$dropout is a factor with the same levels 
test$dropout <- as.factor(test$dropout) 
levels(predict_lasso_class) <- levels(test$dropout)  # Ensure factor levels match 
 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_lasso_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 72832   327 
##          1 19841  2077 
##                                            
##                Accuracy : 0.7879           
##                  95% CI : (0.7853, 0.7905) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.1312           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.86398          
##             Specificity : 0.78590          
##          Pos Pred Value : 0.09476          
##          Neg Pred Value : 0.99553          
##              Prevalence : 0.02528          
##          Detection Rate : 0.02185          
##    Detection Prevalence : 0.23053          
##       Balanced Accuracy : 0.82494          
##                                            
##        'Positive' Class : 1                
##  

f1_score <- cm$byClass["F1"] 
print(f1_score) 

##        F1  
## 0.1707919 

Model 8: SMOTE ridge regression 

https://www.r-bloggers.com/2021/05/class-imbalance-handling-imbalanced-data-in-r/ 

#CV to estimate best lambda 
set.seed(2023) 
cv.ridge <- cv.glmnet(x.train, y.train, alpha = 0, family='binomial') # Fit ridge regression model on 

https://www.r-bloggers.com/2021/05/class-imbalance-handling-imbalanced-data-in-r/
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training data 
#Display MSE vs log-lambda plot 
plot(cv.ridge) # Draw plot of training MSE as a function of lambda 

 

# Extract the coefficients at the best lambda (lambda.min or lambda.1se) 
 
ridge.pred <- predict(cv.ridge, newx=x.test, s = "lambda.min", type="response") 
# Ensure lasso.pred is a numeric vector 
ridge.pred <- as.numeric(ridge.pred) 
print(length(ridge.pred))  # Check length of lasso.pred 

## [1] 95077 

#Create ROC curve 
pred_ridge <- prediction(ridge.pred, y.test) 
y.test <- as.matrix(y.test) 
perf_ridge <- performance(pred_ridge , "tpr", "fpr") 
#plot_ridge <- plot(perf_ridge, colorize=TRUE) #lasso prob threshold should be 0.2 
#abline(h = 0.8, col = "red", lty = 2)  # Add threshold line 
 
# AuC 
perf_ridge <- performance(pred_ridge,"auc") 
auc <- as.numeric(perf_ridge@y.values) 
auc 
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## [1] 0.9085196 

# Convert predictions to factors  
predict_ridge_class <- as.factor(ifelse(ridge.pred >= 0.2, "1", "0")) 
# Ensure test$dropout is a factor with the same levels 
test$dropout <- as.factor(test$dropout) 
levels(predict_ridge_class) <- levels(test$dropout)  # Ensure factor levels match 

 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_ridge_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 57299   117 
##          1 35374  2287 
##                                            
##                Accuracy : 0.6267           
##                  95% CI : (0.6236, 0.6298) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.07             
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.95133          
##             Specificity : 0.61829          
##          Pos Pred Value : 0.06073          
##          Neg Pred Value : 0.99796          
##              Prevalence : 0.02528          
##          Detection Rate : 0.02405          
##    Detection Prevalence : 0.39611          
##       Balanced Accuracy : 0.78481          
##                                            
##        'Positive' Class : 1                
##  

Model 9: SMOTE random forest 

https://www.r-bloggers.com/2021/05/class-imbalance-handling-imbalanced-data-in-r/ 

train <- read.csv("oversampletrain.csv") 
test <- read.csv("test.csv") 
train_nodem = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

https://www.r-bloggers.com/2021/05/class-imbalance-handling-imbalanced-data-in-r/
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str(train_nodem) 

## 'data.frame':    175021 obs. of  42 variables: 
##  $ dropout                   : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ ever_stsusp_middle        : num  1 1 1 1 1 1 0 1 0 1 ... 
##  $ ever_ltsusp_middle        : num  0 0 0 0 0 0 0 0 0 0 ... 
##  $ ever_OSS_6                : num  0 1 0 0 1 1 0 0 0 0 ... 
##  $ ever_OSS_7                : num  0 0 1 0 1 1 0 1 0 1 ... 
##  $ ever_OSS_8                : num  1 1 0 1 0 0 0 0 0 1 ... 
##  $ ever_OSS_middle           : num  1 1 1 1 1 1 0 1 0 1 ... 
##  $ ever_ISS_middle           : num  0 0 0 0 1 1 0 1 0 1 ... 
##  $ ever_ISS_6                : num  0 0 0 0 1 1 0 0 0 1 ... 
##  $ ever_ISS_7                : num  0 0 1 0 1 1 0 1 0 1 ... 
##  $ ever_ISS_8                : num  0 0 1 0 1 0 0 0 0 1 ... 
##  $ not_math_proficient_6     : num  1 0 1 1 1 0 0 0 0 0 ... 
##  $ not_math_proficient_7     : num  1 0 1 0 1 1 0 1 0 0 ... 
##  $ not_math_proficient_8     : num  1 1 1 1 1 1 0 1 1 1 ... 
##  $ no_math_proficiency_middle: num  1 0 1 0 1 0 0 0 0 0 ... 
##  $ not_read_proficient_6     : num  1 0 1 0 1 1 0 1 0 1 ... 
##  $ not_read_proficient_7     : num  1 1 1 1 1 1 0 1 0 1 ... 
##  $ not_read_proficient_8     : num  1 1 1 1 1 1 1 1 1 1 ... 
##  $ no_read_proficiency_middle: num  1 0 1 0 1 1 0 1 0 1 ... 
##  $ eds                       : num  1 0 1 0 1 1 0 1 1 1 ... 
##  $ age_eighthfall1           : num  14.6 13.5 14.9 14.2 14.3 15.6 13.9 14.8 14.2 14.2 ... 
##  $ ever_swd                  : num  1 0 0 0 1 0 0 0 0 1 ... 
##  $ swd_8                     : num  1 0 0 0 1 0 0 0 0 1 ... 
##  $ ever_lep                  : num  0 0 0 0 0 0 0 0 0 0 ... 
##  $ lep_8                     : num  0 0 0 0 0 0 0 0 0 0 ... 
##  $ absence_rate_6            : num  0.05 0.02 0.03 0.01 0.04 ... 
##  $ absence_rate_7            : num  0.07 0.02 0 0.03 0.03 ... 
##  $ absence_rate_8            : num  0.13 0.07 0.06 0.13 0.13 ... 
##  $ chrabsent_6               : num  0 0 0 0 0 1 1 0 0 0 ... 
##  $ chrabsent_7               : num  0 0 0 0 0 1 1 0 1 1 ... 
##  $ chrabsent_8               : num  1 0 0 1 1 0 1 1 1 1 ... 
##  $ ever_chrabsent_middle     : num  1 0 0 1 1 1 1 1 1 1 ... 
##  $ chrabsent_middle          : num  0 0 0 0 0 0 1 0 0 0 ... 
##  $ school_mobility_middle    : num  1 1 1 2 2 2 1 2 1 3 ... 
##  $ school_mobility_8         : num  1 1 1 1 1 1 1 2 1 2 ... 
##  $ school_mobility_7         : num  1 1 1 1 1 1 1 1 1 2 ... 
##  $ school_mobility_6         : num  1 1 1 1 1 2 1 1 1 1 ... 
##  $ urban                     : num  1 0 0 0 0 0 1 0 0 0 ... 
##  $ suburban                  : num  0 1 0 0 0 1 0 0 0 0 ... 
##  $ town                      : num  0 0 1 0 0 0 0 0 0 1 ... 
##  $ rural                     : num  0 0 0 1 1 0 0 1 1 0 ... 
##  $ ever_suspended            : num  1 1 1 1 1 1 0 1 0 1 ... 

train_nodem$dropout <- as.factor(train_nodem$dropout ) 
# Running RF 
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set.seed(2023) 
RF.dropout <- randomForest(dropout ~ ., data = train_nodem, ntree = 100, importance = TRUE) 

 

 
# Predict on the TEST data 
rf.pred <- predict(RF.dropout, newdata = test[,-1], type = "prob")[,2] 

 
# Create a prediction object for ROCR 
rf_pr_test <- prediction(rf.pred, test$dropout) 
 
# Create a performance object for ROC curve 
perf_rf <- performance(rf_pr_test, "tpr", "fpr") 
 
# Plot the ROC curve 
#plot(perf_rf, colorize = TRUE, main = "ROC Curve") 
#abline(h = 0.8, col = "red", lty = 2)  # Adjust according to your needs 
 
# Calculate AUC 
auc <- performance(rf_pr_test, measure = "auc") 
print(auc@y.values[[1]]) 

## [1] 0.864723 

# Convert predictions to binary class (assuming binary classification) 
predict_rf_class <- as.factor(ifelse(rf.pred >= 0.1, 1, 0)) 
test$dropout <- as.factor(test$dropout) 
 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_rf_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 76482   612 
##          1 16191  1792 
##                                            
##                Accuracy : 0.8233           
##                  95% CI : (0.8208, 0.8257) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.1373           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.74542          
##             Specificity : 0.82529          
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##          Pos Pred Value : 0.09965          
##          Neg Pred Value : 0.99206          
##              Prevalence : 0.02528          
##          Detection Rate : 0.01885          
##    Detection Prevalence : 0.18914          
##       Balanced Accuracy : 0.78536          
##                                            
##        'Positive' Class : 1                
##  

# F1 Score 
f1_score <- cm$byClass["F1"] 
print(f1_score) 

##        F1  
## 0.1757983 

Preparing for SMOTE xgboost 

train <- read.csv("oversampletrain.csv") 
test <- read.csv("test.csv") 
train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
 
str(train) 
summary(train$dropout) 
str(test) 
 
y.train = train$dropout %>% unlist() %>% as.numeric() 
y.test = test$dropout %>% unlist() %>% as.numeric() 
x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  
x.test = model.matrix(dropout~., test)[,-1] 

 

 
# Check the structure of data 
str(x.train) 
str(x.test) 
str(y.test) 
 
dtrain <- xgb.DMatrix(data = x.train, label = y.train) 
dtest <- xgb.DMatrix(data = x.test, label = y.test) 
ts_label <- test$dropout 

 

 
# Initial parameter setup (if needed) 
initial_params <- list( 
  booster = "gbtree", 
  objective = "binary:logistic", 
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  eval_metric = "logloss", 
  eta = 0.3, 
  max_depth = 6, gamma = 3 
) 

 
# Cross-validation to find optimal rounds of boosting 
cv_results <- xgb.cv( 
  params = initial_params, 
  data = dtrain, 
  nrounds = 100, 
  nfold = 5, 
  early_stopping_rounds = 20, 
  verbose = 1 
) 
 
# Extract the Best Number of Rounds 
best_nrounds <- cv_results$best_iteration 
 
# Train the Final Model with Optimal Parameters 
set.seed(2023) 
final_model <- xgb.train( 
  params = initial_params, 
  data = dtrain, 
  nrounds = best_nrounds 
) 
 
# Grid search for hyperparameter tuning 
search_grid <- expand.grid( 
  max_depth = c(3, 6), 
  eta = c(0.01, 0.1), 
  colsample_bytree = c(0.5, 0.7) 
) 
 
best_auc <- Inf  # Use Inf for minimization 
best_params <- list() 
 
for (i in 1:nrow(search_grid)) { 
  params <- list( 
    objective = "binary:logistic", 
    eval_metric = "logloss", 
    max_depth = search_grid$max_depth[i], 
    eta = search_grid$eta[i], 
    colsample_bytree = search_grid$colsample_bytree[i] 
  ) 
   
  cv_results <- xgb.cv( 
    params = params, 
    data = dtrain, 
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    nfold = 5, 
    nrounds = 100, 
    early_stopping_rounds = 10, 
    verbose = 1 
  ) 
   
  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 
   
  if (mean_logloss < best_auc) { 
    best_auc <- mean_logloss 
    best_params <- params 
    best_nrounds <- cv_results$best_iteration 
  } 
} 

Model 10: SMOTE xgboost 

# Train the final model with the best parameters 
dtest <- xgb.DMatrix(data = x.test, label = y.test) 
set.seed(2023) 
xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 20, nrounds = best_nrounds) 

## [1]  val-logloss:0.631128    train-logloss:0.631665  
## [21] val-logloss:0.242482    train-logloss:0.208547  
## [41] val-logloss:0.166629    train-logloss:0.118527  
## [61] val-logloss:0.132950    train-logloss:0.082313  
## [81] val-logloss:0.114859    train-logloss:0.063310  
## [100]    val-logloss:0.103824    train-logloss:0.051447 

#model prediction 
xgbpred <- predict (xgb1,dtest) 
xgbpred <- ifelse (xgbpred > 0.1,"1", "0") 
 
y.test <- as.factor(y.test) 
xgbpred <- as.factor(xgbpred) 
y.test = test$dropout %>% unlist() %>% as.factor() 
 
predict_xgboost <- predict(xgb1, dtest, type = 'response') 
pred_xgboost <- prediction(predict_xgboost, test$dropout) 
# Create a performance object for ROC curve 
perf_xgboost <- performance(pred, "tpr", "fpr") 
# Plot the first ROC curve (perf_log) 
plot(perf_xgboost, colorize = TRUE, main = "ROC Curve") 
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# Create confusion matrix 
cm <- confusionMatrix(data = xgbpred, reference = y.test, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 79909   656 
##          1 12764  1748 
##                                            
##                Accuracy : 0.8589           
##                  95% CI : (0.8566, 0.8611) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.1707           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.72712          
##             Specificity : 0.86227          
##          Pos Pred Value : 0.12045          
##          Neg Pred Value : 0.99186          
##              Prevalence : 0.02528          
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##          Detection Rate : 0.01839          
##    Detection Prevalence : 0.15263          
##       Balanced Accuracy : 0.79469          
##                                            
##        'Positive' Class : 1                
##  

plotting SMOTE ROC curves in one graph 

x = seq(1,10,1) 
y = 1.5*x 
windowsFonts(A = windowsFont("Times New Roman")) 
plot(x, y, 
  family="A", 
  main = "title", 
  font=2) 

 

windowsFonts("Times New Roman" = windowsFont("Times New Roman")) 
 
# Set the font to Times New Roman in the plots 
plot(perf_log, colorize = FALSE, col = "blue", family = "Times New Roman") 
 
# Add the second ROC curve for perf_lasso with a different color 
plot(perf_lasso, colorize = FALSE, col = "orange", add = TRUE, family = "Times New Roman") 
#plot(perf_ridge, colorize = FALSE, col = "brown", add = TRUE, family = "Times New Roman") 
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plot(perf_rf, colorize = FALSE, col = "black", add = TRUE, family = "Times New Roman") 
plot(perf_xgboost, colorize = FALSE, col = "red", add = TRUE, family = "Times New Roman") 

 
# Add a legend to the plot with Times New Roman font 
legend("bottomright",  # Position of the legend (can change to topright, top, etc.) 
       legend = c("Logistic Regression", "Lasso Regression", "Ridge Regression", "Random Forest", 

"XGboost"),   
       col = c("blue", "orange", "brown", "black", "red"),  # Colors of the curves 
       lty = 1,  # Line type for the curves (solid line) 
       cex = 0.8)  # Text size for the legend 

 

     #  family = "Times New Roman")  # Font family for the legend 

Undersampling 

train <- read.csv("train.csv") 
test <- read.csv("test.csv") 
str(train) 
str(test) 
library(ROSE) 

## Loaded ROSE 0.0-4 

table(train$dropout) 
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# Perform undersampling 
undersample_result <- ovun.sample(dropout ~ ., data = train, method = "under", N = 3102, seed = 1) 

 
# Convert the result to a data frame 
undersampletrain <- undersample_result$data 

 
# Check the first few rows of the undersampled data 
head(undersampletrain) 
 
table(undersampletrain$dropout) 
write.csv(undersampletrain,'undersampletrain.csv', row.names=FALSE) 

Model 11: Undersample logistic regression 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 
test <- read.csv("test.csv") 
 
log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, white, 

other_race)), family = 'binomial') 

 
# Create a prediction object for ROCR 
pred <- prediction(predict_log, test$dropout) 

 
# Create a performance object for ROC curve 
perf_log <- performance(pred, "tpr", "fpr") 
 
# Plot the ROC curve 
plot(perf_log, colorize = TRUE, main = "ROC Curve") 
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# AuC score 
auc <- performance(pred, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9027851 

# Convert predictions to factors (assuming binary classification) 
predict_log_class <- as.factor(ifelse(predict_log >= 0.6, 1, 0)) 
test$dropout <- as.factor(test$dropout) 

 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_log_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 81108   595 
##          1 11565  1809 
##                                          
##                Accuracy : 0.8721         
##                  95% CI : (0.87, 0.8742) 
##     No Information Rate : 0.9747         
##     P-Value [Acc > NIR] : 1              
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##                                          
##                   Kappa : 0.1948         
##                                          
##  Mcnemar's Test P-Value : <2e-16         
##                                          
##             Sensitivity : 0.75250        
##             Specificity : 0.87521        
##          Pos Pred Value : 0.13526        
##          Neg Pred Value : 0.99272        
##              Prevalence : 0.02528        
##          Detection Rate : 0.01903        
##    Detection Prevalence : 0.14066        
##       Balanced Accuracy : 0.81385        
##                                          
##        'Positive' Class : 1              
##  

Preparing for undersampled lasso and ridge 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 
test <- read.csv("test.csv") 
#str(train) 
#str(test) 
 
train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
 
y.train = train$dropout %>% unlist() %>% as.numeric() 
y.test = test$dropout %>% unlist() %>% as.numeric() 
x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  
x.test = model.matrix(dropout~., test)[,-1] 

 
dim(x.train) 
dim(x.test) 
 
write.csv(x.train,'x.train.csv', row.names=FALSE) 
write.csv(x.test,'x.test.csv', row.names=FALSE) 
write.csv(y.train,'y.train.csv', row.names=FALSE) 
write.csv(y.test,'y.test.csv', row.names=FALSE) 

Model 12: Undersampled lasso regression 

set.seed(2023) 
cv.lasso <- cv.glmnet(x.train, y.train, alpha = 1, family='binomial') # Fit lasso regression model on 

training data 
#Display MSE vs log-lambda plot 
plot(cv.lasso) # Draw plot of training MSE as a function of lambda 



 

180 

 

 

# Extract the coefficients at the best lambda (lambda.min or lambda.1se) 
lasso.coefs <- coef(cv.lasso, s = "lambda.min")  # or use lambda.1se for a more regularized solution 
 

 
# ROC analysis to identify optimal threshold 
lasso.pred <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 
# Ensure lasso.pred is a numeric vector 
lasso.pred <- as.numeric(lasso.pred) 
print(length(lasso.pred))  # Check length of lasso.pred 

## [1] 95077 

#Create ROC curve 
pred_lasso <- prediction(lasso.pred, y.test) 
y.test <- as.matrix(y.test) 
perf_lasso <- performance(pred_lasso , "tpr", "fpr") 
#plot(perf_lasso, colorize=TRUE) #lasso prob threshold should be 
 
# Convert predictions to factors  
predict_lasso_class <- as.factor(ifelse(lasso.pred >= 0.4, "1", "0")) 
# Ensure test$dropout is a factor with the same levels 
test$dropout <- as.factor(test$dropout) 
levels(predict_lasso_class) <- levels(test$dropout)  # Ensure factor levels match 
 
# AuC score 



 

181 

 

auc <- performance(pred_lasso, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9073362 

# Create confusion matrix 
cm <- confusionMatrix(data = predict_lasso_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 84621   749 
##          1  8052  1655 
##                                            
##                Accuracy : 0.9074           
##                  95% CI : (0.9056, 0.9093) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.2426           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.68844          
##             Specificity : 0.91311          
##          Pos Pred Value : 0.17050          
##          Neg Pred Value : 0.99123          
##              Prevalence : 0.02528          
##          Detection Rate : 0.01741          
##    Detection Prevalence : 0.10210          
##       Balanced Accuracy : 0.80077          
##                                            
##        'Positive' Class : 1                
##  

Model 13: Undersampled ridge regression 

#CV to estimate best lambda 
set.seed(2023) 
cv.ridge <- cv.glmnet(x.train, y.train, alpha = 0, family='binomial') # Fit ridge regression model on 

training data 
#Display MSE vs log-lambda plot 
plot(cv.ridge) # Draw plot of training MSE as a function of lambda 
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# Extract the coefficients at the best lambda (lambda.min or lambda.1se) 
ridge.coefs <- coef(cv.ridge, s = "lambda.min")  # or use lambda.1se for a more regularized solution 
 

 

 

 
ridge.pred <- predict(cv.ridge, newx=x.test, s = "lambda.min", type="response") 
# Ensure lasso.pred is a numeric vector 
ridge.pred <- as.numeric(ridge.pred) 
print(length(ridge.pred))  # Check length of lasso.pred 

## [1] 95077 

#Create ROC curve 
pred_ridge <- prediction(ridge.pred, y.test) 
y.test <- as.matrix(y.test) 
perf_ridge <- performance(pred_ridge , "tpr", "fpr") 
plot_ridge <- plot(perf_ridge, colorize=TRUE) #lasso prob threshold should be 0.2 
abline(h = 0.8, col = "red", lty = 2)  # Add threshold line 
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# AuC 
perf_ridge <- performance(pred_ridge,"auc") 
auc <- as.numeric(perf_ridge@y.values) 
auc 

## [1] 0.9075588 

# Convert predictions to factors  
predict_ridge_class <- as.factor(ifelse(ridge.pred >= 0.2, "1", "0")) 
# Ensure test$dropout is a factor with the same levels 
test$dropout <- as.factor(test$dropout) 
levels(predict_ridge_class) <- levels(test$dropout)  # Ensure factor levels match 
 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_ridge_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 75133   376 
##          1 17540  2028 
##                                           
##                Accuracy : 0.8116          
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##                  95% CI : (0.8091, 0.814) 
##     No Information Rate : 0.9747          
##     P-Value [Acc > NIR] : 1               
##                                           
##                   Kappa : 0.1461          
##                                           
##  Mcnemar's Test P-Value : <2e-16          
##                                           
##             Sensitivity : 0.84359         
##             Specificity : 0.81073         
##          Pos Pred Value : 0.10364         
##          Neg Pred Value : 0.99502         
##              Prevalence : 0.02528         
##          Detection Rate : 0.02133         
##    Detection Prevalence : 0.20581         
##       Balanced Accuracy : 0.82716         
##                                           
##        'Positive' Class : 1               
##  

f1_score <- cm$byClass["F1"] 
print(f1_score) 

##        F1  
## 0.1845986 

Model 14: Undersampled random forest 

train <- read.csv("undersampletrain.csv") 
test <- read.csv("test.csv") 
train_nodem = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 
str(train_nodem) 

## 'data.frame':    3102 obs. of  42 variables: 
##  $ dropout                   : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ ever_stsusp_middle        : int  0 0 0 0 0 1 1 1 0 0 ... 
##  $ ever_ltsusp_middle        : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ ever_OSS_6                : int  0 0 0 0 0 1 0 0 0 0 ... 
##  $ ever_OSS_7                : int  0 0 0 0 0 0 1 0 0 0 ... 
##  $ ever_OSS_8                : int  0 0 0 0 0 1 1 1 0 0 ... 
##  $ ever_OSS_middle           : int  0 0 0 0 0 1 1 1 0 0 ... 
##  $ ever_ISS_middle           : int  1 0 0 0 0 0 1 0 0 0 ... 
##  $ ever_ISS_6                : int  1 0 0 0 0 0 1 0 0 0 ... 
##  $ ever_ISS_7                : int  0 0 0 0 0 0 1 0 0 0 ... 
##  $ ever_ISS_8                : int  0 0 0 0 0 0 1 0 0 0 ... 
##  $ not_math_proficient_6     : int  0 0 0 0 0 0 0 0 1 0 ... 
##  $ not_math_proficient_7     : int  1 0 0 0 1 0 0 1 0 0 ... 
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##  $ not_math_proficient_8     : int  1 0 0 0 1 1 1 1 1 0 ... 
##  $ no_math_proficiency_middle: int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ not_read_proficient_6     : int  1 0 0 0 0 0 0 1 1 0 ... 
##  $ not_read_proficient_7     : int  1 0 0 0 0 0 0 1 1 0 ... 
##  $ not_read_proficient_8     : int  1 0 0 0 1 0 0 1 1 0 ... 
##  $ no_read_proficiency_middle: int  1 0 0 0 0 0 0 1 1 0 ... 
##  $ eds                       : int  0 0 1 0 0 1 1 1 0 0 ... 
##  $ age_eighthfall1           : num  14 13.9 14 13.8 13.7 13.2 13.4 13.6 13.5 13.3 ... 
##  $ ever_swd                  : int  0 0 0 0 0 0 0 1 1 0 ... 
##  $ swd_8                     : int  0 0 0 0 0 0 0 1 0 0 ... 
##  $ ever_lep                  : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ lep_8                     : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ absence_rate_6            : num  0 0.06 0.08 0.01 0.04 ... 
##  $ absence_rate_7            : num  0 0.05 0.09 0 0 ... 
##  $ absence_rate_8            : num  0 0.02 0.08 0.06 0.03 ... 
##  $ chrabsent_6               : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ chrabsent_7               : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ chrabsent_8               : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ ever_chrabsent_middle     : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ chrabsent_middle          : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ school_mobility_middle    : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ school_mobility_8         : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ school_mobility_7         : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ school_mobility_6         : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ urban                     : int  0 1 0 0 0 1 0 1 0 0 ... 
##  $ suburban                  : int  0 0 0 0 0 0 0 0 1 1 ... 
##  $ town                      : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ rural                     : int  1 0 1 1 1 0 1 0 0 0 ... 
##  $ ever_suspended            : int  1 0 0 0 0 1 1 1 0 0 ... 

train_nodem$dropout <- as.factor(train_nodem$dropout ) 
# Running RF 
set.seed(2023) 
RF.dropout <- randomForest(dropout ~ ., data = train_nodem, ntree = 100, importance = TRUE) 

 

 
# Predict on the TEST data 
rf.pred <- predict(RF.dropout, newdata = test[,-1], type = "prob")[,2] 

 
# Create a prediction object for ROCR 
rf_pr_test <- prediction(rf.pred, test$dropout) 
 
# Create a performance object for ROC curve 
perf_rf <- performance(rf_pr_test, "tpr", "fpr") 
 
# Plot the ROC curve 
#plot(perf_rf, colorize = TRUE, main = "ROC Curve") 
#abline(h = 0.8, col = "red", lty = 2)  # Adjust according to your needs 
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# Calculate AUC 
auc <- performance(rf_pr_test, measure = "auc") 
print(auc@y.values[[1]]) 

## [1] 0.899018 

# Convert predictions to binary class (assuming binary classification) 
predict_rf_class <- as.factor(ifelse(rf.pred >= 0.4, 1, 0)) 
test$dropout <- as.factor(test$dropout) 

 
# Create confusion matrix 
cm <- confusionMatrix(data = predict_rf_class, reference = test$dropout, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 68125   260 
##          1 24548  2144 
##                                            
##                Accuracy : 0.7391           
##                  95% CI : (0.7363, 0.7419) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.1059           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.89185          
##             Specificity : 0.73511          
##          Pos Pred Value : 0.08032          
##          Neg Pred Value : 0.99620          
##              Prevalence : 0.02528          
##          Detection Rate : 0.02255          
##    Detection Prevalence : 0.28074          
##       Balanced Accuracy : 0.81348          
##                                            
##        'Positive' Class : 1                
##  

# F1 Score 
f1_score <- cm$byClass["F1"] 
print(f1_score) 

##        F1  
## 0.1473742 
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Preparing for Undersampled XGboost 

train <- read.csv("undersampletrain.csv") 
test <- read.csv("test.csv") 
str(train) 
str(test) 
 
train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  
test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  
 
y.train = train$dropout %>% unlist() %>% as.numeric() 
y.test = test$dropout %>% unlist() %>% as.numeric() 
x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  
x.test = model.matrix(dropout~., test)[,-1] 

 
# Check the structure of data 
str(x.train) 
str(x.test) 
str(y.train) 
str(y.test) 

 
# Data preparation 
dtrain <- xgb.DMatrix(data = x.train, label = y.train) 
dtest <- xgb.DMatrix(data = x.test, label = y.test) 
ts_label <- test$dropout 
 

 
# Initial parameter setup (if needed) 
initial_params <- list( 
  booster = "gbtree", 
  objective = "binary:logistic", 
  eval_metric = "logloss", 
  eta = 0.3, 
  max_depth = 6, gamma = 3 
) 

 
# Cross-validation to find optimal rounds of boosting 
cv_results <- xgb.cv( 
  params = initial_params, 
  data = dtrain, 
  nrounds = 100, 
  nfold = 5, 
  early_stopping_rounds = 20, 
  verbose = 1 
) 
 
# Extract the Best Number of Rounds 
best_nrounds <- cv_results$best_iteration 
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# Train the Final Model with Optimal Parameters 
set.seed(2023) 
final_model <- xgb.train( 
  params = initial_params, 
  data = dtrain, 
  nrounds = best_nrounds 
) 

 
# Grid search for hyperparameter tuning 
search_grid <- expand.grid( 
  max_depth = c(3, 6), 
  eta = c(0.01, 0.1), 
  colsample_bytree = c(0.5, 0.7) 
) 
 
best_auc <- Inf  # Use Inf for minimization 
best_params <- list() 
 
for (i in 1:nrow(search_grid)) { 
  params <- list( 
    objective = "binary:logistic", 
    eval_metric = "logloss", 
    max_depth = search_grid$max_depth[i], 
    eta = search_grid$eta[i], 
    colsample_bytree = search_grid$colsample_bytree[i] 
  ) 
   
  cv_results <- xgb.cv( 
    params = params, 
    data = dtrain, 
    nfold = 5, 
    nrounds = 100, 
    early_stopping_rounds = 10, 
    verbose = 1 
  ) 

   
  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 
   
  if (mean_logloss < best_auc) { 
    best_auc <- mean_logloss 
    best_params <- params 
    best_nrounds <- cv_results$best_iteration 
  } 
} 

Model 15: Undersampled XGboost 



 

189 

 

# Train the final model with the best parameters 
dtest <- xgb.DMatrix(data = x.test, label = y.test) 
set.seed(2023) 
xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 10, nrounds = best_nrounds) 

## [1]  val-logloss:0.646212    train-logloss:0.647242  
## [11] val-logloss:0.460663    train-logloss:0.441257  
## [21] val-logloss:0.411490    train-logloss:0.370018  
## [31] val-logloss:0.392529    train-logloss:0.340938  
## [41] val-logloss:0.376640    train-logloss:0.325796  
## [51] val-logloss:0.371436    train-logloss:0.317605  
## [61] val-logloss:0.367045    train-logloss:0.311442  
## [71] val-logloss:0.365427    train-logloss:0.306871  
## [81] val-logloss:0.364583    train-logloss:0.303276  
## [91] val-logloss:0.363684    train-logloss:0.299723  
## [92] val-logloss:0.363615    train-logloss:0.299458 

#model prediction 
xgbpred <- predict (xgb1,dtest) 
xgbpred <- ifelse (xgbpred > 0.4,"1", "0") 
 
y.test <- as.factor(y.test) 
xgbpred <- as.factor(xgbpred) 
y.test = test$dropout %>% unlist() %>% as.factor() 

 
predict_xgboost <- predict(xgb1, dtest, type = 'response') 
pred_xgboost <- prediction(predict_xgboost, test$dropout) 
# Create a performance object for ROC curve 
perf_xgboost <- performance(pred, "tpr", "fpr") 
# Plot the first ROC curve (perf_log) 
plot(perf_xgboost, colorize = TRUE, main = "ROC Curve") 
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# Create confusion matrix 
cm <- confusionMatrix(data = xgbpred, reference = y.test, positive = "1") 
print(cm) 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction     0     1 
##          0 73268   324 
##          1 19405  2080 
##                                            
##                Accuracy : 0.7925           
##                  95% CI : (0.7899, 0.7951) 
##     No Information Rate : 0.9747           
##     P-Value [Acc > NIR] : 1                
##                                            
##                   Kappa : 0.1348           
##                                            
##  Mcnemar's Test P-Value : <2e-16           
##                                            
##             Sensitivity : 0.86522          
##             Specificity : 0.79061          
##          Pos Pred Value : 0.09681          
##          Neg Pred Value : 0.99560          
##              Prevalence : 0.02528          
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##          Detection Rate : 0.02188          
##    Detection Prevalence : 0.22597          
##       Balanced Accuracy : 0.82792          
##                                            
##        'Positive' Class : 1                
##  

auc <- performance(pred_xgboost, measure = "auc") 
auc@y.values[[1]] 

## [1] 0.9069999 

plotting undersampled ROC curves in one graph 

x = seq(1,10,1) 
y = 1.5*x 
windowsFonts(A = windowsFont("Times New Roman")) 
plot(x, y, 
  family="A", 
  main = "title", 
  font=2) 

 

windowsFonts(Times=windowsFont("Times New Roman")) 
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# Set the font to Times New Roman in the plots 
plot(perf_log, colorize = FALSE, col = "blue", family = "Times New Roman") 

 
# Add the second ROC curve for perf_lasso with a different color 
plot(perf_lasso, colorize = FALSE, col = "orange", add = TRUE, family = "Times New Roman") 
#plot(perf_ridge, colorize = FALSE, col = "brown", add = TRUE, family = "Times New Roman") 
plot(perf_rf, colorize = FALSE, col = "black", add = TRUE, family = "Times New Roman") 
plot(perf_xgboost, colorize = FALSE, col = "red", add = TRUE, family = "Times New Roman") 

 
# Add a legend to the plot with Times New Roman font 
legend("bottomright",  # Position of the legend (can change to topright, top, etc.) 
       legend = c("Logistic Regression", "Lasso Regression", "Ridge Regression", "Random Forest", 

"XGboost"),   
       col = c("blue", "orange", "brown", "black", "red"),  # Colors of the curves 
       lty = 1,  # Line type for the curves (solid line) 
       cex = 0.8)  # Text size for the legend 

 

     #  family = "Times New Roman")  # Font family for the legend  
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Figure B2: Code for research question 2 

Data cleaning 

#cleaning train data 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/Training sample/Data/trainingpanel.csv") 

summary(train) 

# str(train) this showed that almost no variables were factors 

train <- train %>% mutate_if(is.integer, as.factor) 

train = subset(train, select = -c(mastid) )  

train <- train %>% as_tibble  %>% mutate(across(c(40:43), as.numeric)) 

str(train) 

 

#cleaning test data 

test <- read.csv("D:/NCERDC_DATA/Alam/ML/Testing sample/Data/testingpanel.csv") 

test <- test %>% mutate_if(is.integer, as.factor) 

test = subset(test, select = -c(mastid) )  

train <- train %>% as_tibble  %>% mutate(across(c(40:43), as.numeric)) 

str(test) 

 

write.csv(train,'train.csv', row.names=FALSE) 

write.csv(test,'test.csv', row.names=FALSE) 

ABROCA logistic regression 

train <- read.csv("train.csv") 

test <- read.csv("test.csv") 

 

train$dropout <- as.factor(train$dropout) 

test$dropout <- as.factor(test$dropout) 

 

train <- train %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

test <- test %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

 

log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, 

white,other_race, eds, lep_8, ever_lep, swd_8, ever_swd)), family='binomial') 

 

test$pred = predict(log1.m, test, type = "response") 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 

## prediction from a rank-deficient fit may be misleading 
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#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "log reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.00558827 

run_abroca("eds", "log reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04535414 

run_abroca("lep_8", "log reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.08939902 

run_abroca("swd_8", "log reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05801772 
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#RACE ABROCA 

abroca_logreg_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="log reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_logreg_white) 

## [1] 0.03228699 

Preparing for Lasso and Ridge 

train <- read.csv("train.csv") 

test <- read.csv("test.csv") 

 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  

x.test = model.matrix(dropout~., test)[,-1] 

 

dim(x.train) 

dim(x.test) 

 

 

write.csv(x.train,'x.train.csv', row.names=FALSE) 

write.csv(x.test,'x.test.csv', row.names=FALSE) 

write.csv(y.train,'y.train.csv', row.names=FALSE) 

write.csv(y.test,'y.test.csv', row.names=FALSE) 

ABROCA lasso regression 

# Fit lasso regression model on training data 

set.seed(2023) 

cv.lasso <- cv.glmnet(x = x.train, y.train, alpha = 1, family='binomial')  

 

#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 
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test$pred <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "lasso reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.00448462 

run_abroca("eds", "lasso reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04490864 

run_abroca("lep_8", "lasso reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.09048575 

run_abroca("swd_8", "lasso reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.06055086 

#RACE ABROCA 

abroca_lassoreg_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="lasso reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_lassoreg_white) 

## [1] 0.0371041 

ABROCA ridge regression 

set.seed(2023) 

cv.ridge <- cv.glmnet(x = x.train, y.train, alpha = 0, family='binomial') # Fit lasso regression model on 

training data 

 

 

#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

test$pred <- predict(cv.ridge, newx=x.test, s = "lambda.min", type="response") 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "ridge reg female") 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.004952419 

run_abroca("eds", "ridge reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04491096 

run_abroca("lep_8", "ridge reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.09185735 

run_abroca("swd_8", "ridge reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05847756 

#RACE ABROCA 

abroca_ridgereg_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="rige reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_ridgereg_white) 
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## [1] 0.03696708 

ABROCA random forest 

train <- read.csv("train.csv") 

test <- read.csv("test.csv") 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

test <- test %>% mutate_if(is.factor, as.integer) 

test$dropout <- as.factor(test$dropout) 

train$dropout <- as.factor(train$dropout) 

 

 

set.seed(2023) 

RF.dropout <- randomForest(dropout ~ ., data = train, ntree = 100, importance = TRUE) 

test$pred <- predict(RF.dropout, newdata = test, type = "prob") 

 

#needno_math_proficiency_middle#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race"), as.factor)) 

test$pred <- predict(RF.dropout, newdata = test, type = "prob")[,2] 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "rf female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.02123401 

run_abroca("eds", "rf eds") 

## [WARNING] coercing column eds to factor 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.03441692 

run_abroca("lep_8", "rf ell") 

## [WARNING] coercing column lep_8 to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.07710557 

run_abroca("swd_8", "rf swd") 

## [WARNING] coercing column swd_8 to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04108753 

#RACE ABROCA 

abroca_rf_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="rf white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_rf_white) 

## [1] 0.01783665 

Prepping for xgboost 
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train <- read.csv("train.csv") 

test <- read.csv("test.csv") 

 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  

x.test = model.matrix(dropout~., test)[,-1] 

 

# Data preparation 

dtrain <- xgb.DMatrix(data = x.train, label = y.train) 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

ts_label <- test$dropout 

 

# Initial parameter setup (if needed) 

initial_params <- list( 

  booster = "gbtree", 

  objective = "binary:logistic", 

  eval_metric = "logloss", 

  eta = 0.3, 

  max_depth = 6, gamma = 3 

) 

 

# Cross-validation to find optimal rounds of boosting 

cv_results <- xgb.cv( 

  params = initial_params, 

  data = dtrain, 

  nrounds = 100, 

  nfold = 5, 

  early_stopping_rounds = 20, 

  verbose = 1 

) 

 

# Extract the Best Number of Rounds 

best_nrounds <- cv_results$best_iteration 

 

# Train the Final Model with Optimal Parameters 

set.seed(2023) 

final_model <- xgb.train( 

  params = initial_params, 

  data = dtrain, 

  nrounds = best_nrounds 

) 

 

# Grid search for hyperparameter tuning 

search_grid <- expand.grid( 

  max_depth = c(3, 6), 
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  eta = c(0.01, 0.1), 

  colsample_bytree = c(0.5, 0.7) 

) 

 

best_auc <- Inf  # Use Inf for minimization 

best_params <- list() 

 

for (i in 1:nrow(search_grid)) { 

  params <- list( 

    objective = "binary:logistic", 

    eval_metric = "logloss", 

    max_depth = search_grid$max_depth[i], 

    eta = search_grid$eta[i], 

    colsample_bytree = search_grid$colsample_bytree[i] 

  ) 

   

  cv_results <- xgb.cv( 

    params = params, 

    data = dtrain, 

    nfold = 5, 

    nrounds = 100, 

    early_stopping_rounds = 10, 

    verbose = 1 

  ) 

   

  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 

   

  if (mean_logloss < best_auc) { 

    best_auc <- mean_logloss 

    best_params <- params 

    best_nrounds <- cv_results$best_iteration 

  } 

} 

 

# Train the final model with the best parameters 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

set.seed(2023) 

xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 10, nrounds = best_nrounds) 

ABROCA xgboost 

#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

test$pred <- predict(xgb1, dtest, type = 'response') 
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#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "xgb female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.005610438 

run_abroca("eds", "xgb eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04764772 

run_abroca("lep_8", "xgb ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.09467474 

run_abroca("swd_8", "xgb swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 
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## [1] 0.05967735 

#RACE ABROCA 

abroca_xgb_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="xgb white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_xgb_white) 

## [1] 0.03376479 

ABROCA SMOTE logistic regression 

train <- read.csv("oversampletrain.csv") 

test <- read.csv("test.csv") 

 

train$dropout <- as.factor(train$dropout) 

test$dropout <- as.factor(test$dropout) 

 

train <- train %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

test <- test %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

 

log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, 

white,other_race, eds, lep_8, ever_lep, swd_8, ever_swd)), family='binomial') 

 

test$pred = predict(log1.m, test, type = "response") 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 

## prediction from a rank-deficient fit may be misleading 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  
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                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "smote_log reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.003953298 

run_abroca("eds", "smote_log reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04290329 

run_abroca("lep_8", "smote_log reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.08240939 

run_abroca("swd_8", "smote_log reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05869391 

#RACE ABROCA 

smote_logreg_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="smote_log reg white") 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(smote_logreg_white) 

## [1] 0.02947809 

ABROCA SMOTE lasso regression 

# Load data 

train <- read.csv("oversampletrain.csv") 

test <- read.csv("test.csv") 

 

# Convert demographic columns to factors 

 

# Prepare data for modeling 

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race, eds, lep_8, ever_lep, 

swd_8, ever_swd))  

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.test = model.matrix(dropout~., test)[,-1] 

x.train = model.matrix(dropout~., train)[,-1] 

 

dim(x.train) 

## [1] 175021     47 

dim(x.test) 

## [1] 95077    36 

# Set seed for reproducibility 

set.seed(2023) 

 

# Lasso regression 

cv.lasso <- cv.glmnet(x = subset(x.train, select = -c(female, hispanic, asian, black, white, other_race, eds, 

lep_8, ever_lep, swd_8, ever_swd)), y.train, alpha = 1, family='binomial') #  

 

# Reload demographic data for test set 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

test$predlasso <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 

 

 

run_abroca <- function(protected_attr, identifier) { 
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  result <- compute_abroca(test, pred_col = "predlasso", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

 

# Run ABROCA for Lasso and Ridge models with different protected attributes 

run_abroca("female", "smote_lasso reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.003708448 

run_abroca("eds", "smote_lasso reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04281845 

run_abroca("lep_8", "smote_lasso reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.08001103 

run_abroca("swd_8", "smote_lasso reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.06088197 
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#RACE ABROCA 

smote_lasso_white <- compute_abroca(test, pred_col = "predlasso", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="smote_lasso reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(smote_lasso_white) 

## [1] 0.02880066 

ABROCA SMOTE ridge regression 

# Ridge regression 

cv.ridge <- cv.glmnet(x = subset(x.train, select = -c(female, hispanic, asian, black, white, other_race, eds, 

lep_8, ever_lep, swd_8, ever_swd)),  

                      y.train, alpha = 0, family='binomial') # Ridge regression 

test$predridge <- predict(cv.ridge, newx=x.test, s = "lambda.min", type="response") 

 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "predridge", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

 

run_abroca("female", "smote_ridge reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.004925568 

run_abroca("eds", "smote_ridge reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04434673 

run_abroca("lep_8", "smote_ridge reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.0864775 

run_abroca("swd_8", "smote_ridge reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05766656 

# Race-specific ABROCA for Ridge regression 

smote_ridge_white <- compute_abroca(test, pred_col = "predridge", label_col = "dropout",  

                                      protected_attr_col = "white", majority_protected_attr_val = "1",  

                                      plot_slices = TRUE, 

image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots",  

                                      identifier="smote_ridge reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(smote_ridge_white) 

## [1] 0.03225496 

ABROCA SMOTE RF 

train <- read.csv("oversampletrain.csv") 

test <- read.csv("test.csv") 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

test <- test %>% mutate_if(is.factor, as.integer) 

test$dropout <- as.factor(test$dropout) 

train$dropout <- as.factor(train$dropout) 
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set.seed(2023) 

RF.dropout <- randomForest(dropout ~ ., data = train, ntree = 100, importance = TRUE) 

test$pred <- predict(RF.dropout, newdata = test, type = "prob") 

 

#needno_math_proficiency_middle#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race"), as.factor)) 

test$pred <- predict(RF.dropout, newdata = test, type = "prob")[,2] 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "rf smote female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.01724477 

run_abroca("eds", "rf smote eds") 

## [WARNING] coercing column eds to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.03761579 

run_abroca("lep_8", "rf smote ell") 

## [WARNING] coercing column lep_8 to factor 



 

211 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.09039756 

run_abroca("swd_8", "rf smote swd") 

## [WARNING] coercing column swd_8 to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04336146 

#RACE ABROCA 

abroca_rfsmote_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier=" rf smote white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_rfsmote_white) 

## [1] 0.02631874 

Prep for SMOTE xgboost 

train <- read.csv("oversampletrain.csv") 

test <- read.csv("test.csv") 

str(train) 

str(test) 

 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  

x.test = model.matrix(dropout~., test)[,-1] 
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# Data preparation 

dtrain <- xgb.DMatrix(data = x.train, label = y.train) 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

ts_label <- test$dropout 

 

 

# Initial parameter setup (if needed) 

initial_params <- list( 

  booster = "gbtree", 

  objective = "binary:logistic", 

  eval_metric = "logloss", 

  eta = 0.3, 

  max_depth = 6, gamma = 3 

) 

 

# Cross-validation to find optimal rounds of boosting 

cv_results <- xgb.cv( 

  params = initial_params, 

  data = dtrain, 

  nrounds = 100, 

  nfold = 5, 

  early_stopping_rounds = 20, 

  verbose = 1 

) 

 

# Extract the Best Number of Rounds 

best_nrounds <- cv_results$best_iteration 

 

# Train the Final Model with Optimal Parameters 

set.seed(2023) 

final_model <- xgb.train( 

  params = initial_params, 

  data = dtrain, 

  nrounds = best_nrounds 

) 

 

# Grid search for hyperparameter tuning 

search_grid <- expand.grid( 

  max_depth = c(3, 6), 

  eta = c(0.01, 0.1), 

  colsample_bytree = c(0.5, 0.7) 

) 

 

best_auc <- Inf  # Use Inf for minimization 

best_params <- list() 

 

for (i in 1:nrow(search_grid)) { 
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  params <- list( 

    objective = "binary:logistic", 

    eval_metric = "logloss", 

    max_depth = search_grid$max_depth[i], 

    eta = search_grid$eta[i], 

    colsample_bytree = search_grid$colsample_bytree[i] 

  ) 

   

  cv_results <- xgb.cv( 

    params = params, 

    data = dtrain, 

    nfold = 5, 

    nrounds = 100, 

    early_stopping_rounds = 10, 

    verbose = 1 

  ) 

   

  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 

   

  if (mean_logloss < best_auc) { 

    best_auc <- mean_logloss 

    best_params <- params 

    best_nrounds <- cv_results$best_iteration 

  } 

} 

 

# Train the final model with the best parameters 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

set.seed(2023) 

xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 10, nrounds = best_nrounds) 

ABROCA SMOTE xgboost 

#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

test$pred <- predict(xgb1, dtest, type = 'response') 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 



 

214 

 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "smote_xgb female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.006328533 

run_abroca("eds", "smote_xgb eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.03154205 

run_abroca("lep_8", "smote_xgb ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.1003346 

run_abroca("swd_8", "smote_xgb swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.06308864 

#RACE ABROCA 

smote_xgb_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="smote_xgb white") 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(smote_xgb_white) 

## [1] 0.03473689 

ABROCA US log reg 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 

test <- read.csv("test.csv") 

 

log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, white, 

other_race)), family = 'binomial') 

 

test$pred = predict(log1.m, test, type = "response") 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 

## prediction from a rank-deficient fit may be misleading 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "US_log reg female") 

## [WARNING] coercing column female to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.005373849 

run_abroca("eds", "US_log reg eds") 

## [WARNING] coercing column eds to factor 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04300543 

run_abroca("lep_8", "US_log reg ell") 

## [WARNING] coercing column lep_8 to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.09075302 

run_abroca("swd_8", "US_log reg swd") 

## [WARNING] coercing column swd_8 to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05623001 

#RACE ABROCA 

US_logreg_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="US_log reg white") 

## [WARNING] coercing column white to factor 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(US_logreg_white) 

## [1] 0.04132319 

ABROCA US lasso regression 
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# Load data 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 

test <- read.csv("test.csv") 

 

# Convert demographic columns to factors 

 

# Prepare data for modeling 

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race, eds, lep_8, ever_lep, 

swd_8, ever_swd))  

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.test = model.matrix(dropout~., test)[,-1] 

gc() 

##            used  (Mb) gc trigger   (Mb)  max used   (Mb) 

## Ncells  3183149 170.0    5829654  311.4   5829654  311.4 

## Vcells 28920979 220.7  318582535 2430.6 398216737 3038.2 

x.train = model.matrix(dropout~., train)[,-1] 

 

dim(x.train) 

## [1] 3102   47 

dim(x.test) 

## [1] 95077    36 

# Set seed for reproducibility 

set.seed(2023) 

 

# Lasso regression 

cv.lasso <- cv.glmnet(x = subset(x.train, select = -c(female, hispanic, asian, black, white, other_race, eds, 

lep_8, ever_lep, swd_8, ever_swd)),  

                      y.train, alpha = 1, family='binomial') # Lasso regression 

test$predlasso <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 

 

# Reload demographic data for test set 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

test$predlasso <- predict(cv.lasso, newx=x.test, s = "lambda.min", type="response") 

 

 

 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "predlasso", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 
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plots",  

                           identifier = identifier) 

  print(result) 

} 

 

 

# Run ABROCA for Lasso and Ridge models with different protected attributes 

run_abroca("female", "smote_lasso reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.004281276 

run_abroca("eds", "US_lasso reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04333633 

run_abroca("lep_8", "US_lasso reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.08555474 

run_abroca("swd_8", "US_lasso reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05609477 

#RACE ABROCA 

US_lasso_white <- compute_abroca(test, pred_col = "predlasso", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  
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               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="US_lasso reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(US_lasso_white) 

## [1] 0.03080395 

ABROCA US ridge regression 

#CV to estimate best lambda 

set.seed(2023) 

cv.ridge <- cv.glmnet(x.train, y.train, alpha = 0, family='binomial') # Fit ridge regression model on 

training data 

cv.ridge <- cv.glmnet(x = subset(x.train, select = -c(female, hispanic, asian, black, white, other_race, eds, 

lep_8, ever_lep, swd_8, ever_swd)),  

                      y.train, alpha = 0, family='binomial') # Ridge regression 

test$predridge <- predict(cv.ridge, newx=x.test, s = "lambda.min", type="response") 

 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "predridge", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

 

run_abroca("female", "US_ridge reg female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.00567008 

run_abroca("eds", "US_ridge reg eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04602865 

run_abroca("lep_8", "US_ridge reg ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.09220061 

run_abroca("swd_8", "US_ridge reg swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.05361092 

# Race-specific ABROCA for Ridge regression 

US_ridgereg_white <- compute_abroca(test, pred_col = "predridge", label_col = "dropout",  

                                      protected_attr_col = "white", majority_protected_attr_val = "1",  

                                      plot_slices = TRUE, 

image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots",  

                                      identifier="US_ridge reg white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(US_ridgereg_white) 

## [1] 0.0337102 

ABROCA US random forest 

train <- read.csv("undersampletrain.csv") 

test <- read.csv("test.csv") 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

test <- test %>% mutate_if(is.factor, as.integer) 

test$dropout <- as.factor(test$dropout) 

train$dropout <- as.factor(train$dropout) 
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set.seed(2023) 

RF.dropout <- randomForest(dropout ~ ., data = train, ntree = 100, importance = TRUE) 

test$pred <- predict(RF.dropout, newdata = test, type = "prob") 

 

#needno_math_proficiency_middle#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race"), as.factor)) 

test$pred <- predict(RF.dropout, newdata = test, type = "prob")[,2] 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "US_rf female") 

## [1] 0.01252986 

run_abroca("eds", "US_rf eds") 

## [WARNING] coercing column eds to factor 

## [1] 0.04422393 

run_abroca("lep_8", "US_rf ell") 

## [WARNING] coercing column lep_8 to factor 

## [1] 0.09303252 

run_abroca("swd_8", "US_rf swd") 

## [WARNING] coercing column swd_8 to factor 

## [1] 0.05869447 

#RACE ABROCA 

US_rf_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 
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identifier="US_rf white") 

print(US_rf_white) 

## [1] 0.03285044 

Prep for US xgboost 

train <- read.csv("undersampletrain.csv") 

test <- read.csv("test.csv") 

str(train) 

str(test) 

 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  

x.test = model.matrix(dropout~., test)[,-1] 

 

 

# Data preparation 

dtrain <- xgb.DMatrix(data = x.train, label = y.train) 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

ts_label <- test$dropout 

 

 

# Initial parameter setup (if needed) 

initial_params <- list( 

  booster = "gbtree", 

  objective = "binary:logistic", 

  eval_metric = "logloss", 

  eta = 0.3, 

  max_depth = 6, gamma = 3 

) 

 

# Cross-validation to find optimal rounds of boosting 

cv_results <- xgb.cv( 

  params = initial_params, 

  data = dtrain, 

  nrounds = 100, 

  nfold = 5, 

  early_stopping_rounds = 20, 

  verbose = 1 

) 

 

# Extract the Best Number of Rounds 

best_nrounds <- cv_results$best_iteration 
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# Train the Final Model with Optimal Parameters 

set.seed(2023) 

final_model <- xgb.train( 

  params = initial_params, 

  data = dtrain, 

  nrounds = best_nrounds 

) 

 

# Grid search for hyperparameter tuning 

search_grid <- expand.grid( 

  max_depth = c(3, 6), 

  eta = c(0.01, 0.1), 

  colsample_bytree = c(0.5, 0.7) 

) 

 

best_auc <- Inf  # Use Inf for minimization 

best_params <- list() 

 

for (i in 1:nrow(search_grid)) { 

  params <- list( 

    objective = "binary:logistic", 

    eval_metric = "logloss", 

    max_depth = search_grid$max_depth[i], 

    eta = search_grid$eta[i], 

    colsample_bytree = search_grid$colsample_bytree[i] 

  ) 

   

  cv_results <- xgb.cv( 

    params = params, 

    data = dtrain, 

    nfold = 5, 

    nrounds = 100, 

    early_stopping_rounds = 10, 

    verbose = 1 

  ) 

   

  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 

   

  if (mean_logloss < best_auc) { 

    best_auc <- mean_logloss 

    best_params <- params 

    best_nrounds <- cv_results$best_iteration 

  } 

} 

 

# Train the final model with the best parameters 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

set.seed(2023) 
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xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 10, nrounds = best_nrounds) 

ABROCA US xgboost 

# Train the final model with the best parameters 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

set.seed(2023) 

xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), 

print_every_n = 10, nrounds = best_nrounds) 

## [1]  val-logloss:0.646212    train-logloss:0.647242  

## [11] val-logloss:0.460663    train-logloss:0.441257  

## [21] val-logloss:0.411490    train-logloss:0.370018  

## [31] val-logloss:0.392529    train-logloss:0.340938  

## [41] val-logloss:0.376640    train-logloss:0.325796  

## [51] val-logloss:0.371436    train-logloss:0.317605  

## [61] val-logloss:0.367045    train-logloss:0.311442  

## [71] val-logloss:0.365427    train-logloss:0.306871  

## [81] val-logloss:0.364583    train-logloss:0.303276  

## [91] val-logloss:0.363684    train-logloss:0.299723  

## [92] val-logloss:0.363615    train-logloss:0.299458 

#need to bring demographics back to test data 

testdems <- read.csv("test.csv") 

test <- testdems %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

test$pred <- predict(xgb1, dtest, type = 'response') 

 

 

#LOOP for attributes where "0" is the majority (eds, ell, swd) 

# Define a helper function to run ABROCA and print the result 

run_abroca <- function(protected_attr, identifier) { 

  result <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

                           protected_attr_col = protected_attr, majority_protected_attr_val = "0",  

                           plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA 

plots",  

                           identifier = identifier) 

  print(result) 

} 

 

# Run ABROCA for different protected attributes 

run_abroca("female", "xgb female") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 
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## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.006529927 

run_abroca("eds", "xgb eds") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.04823376 

run_abroca("lep_8", "xgb ell") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.1000961 

run_abroca("swd_8", "xgb swd") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

## [1] 0.0619064 

#RACE ABROCA 

abroca_xgb_white <- compute_abroca(test, pred_col = "pred", label_col = "dropout",  

               protected_attr_col = "white", majority_protected_attr_val = "1",  

               plot_slices = TRUE, image_dir="D:/NCERDC_DATA/Alam/ML/Analysis/ABROCA plots", 

identifier="xgb white") 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

 

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): 

## collapsing to unique 'x' values 

print(abroca_xgb_white) 

## [1] 0.03826571 
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Kruskal wallis tests 

gender = list(0.006, 0.005, 0.006, 0.021, 0.006, 0.004, 0.004, 0.004, 0.017, 0.006, 0.003, 0.005, 0.007, 

0.017, 0.006) 

kruskal.test(gender) 

##  

##  Kruskal-Wallis rank sum test 

##  

## data:  gender 

## Kruskal-Wallis chi-squared = 14, df = 14, p-value = 0.4497 

ell = list(0.090, 0.087, 0.089, 0.077, 0.095, 0.082, 0.080, 0.080, 0.090, 0.100, 0.086, 0.092, 0.101, 0.090, 

0.10) 

kruskal.test(ell) 

##  

##  Kruskal-Wallis rank sum test 

##  

## data:  ell 

## Kruskal-Wallis chi-squared = 14, df = 14, p-value = 0.4497 

disability = list(0.058, 0.06, 0.058, 0.041, 0.06, 0.059, 0.061, 0.061, 0.043, 0.063, 0.056, 0.056, 0.046, 

0.043, 0.063) 

kruskal.test(disability) 

##  

##  Kruskal-Wallis rank sum test 

##  

## data:  disability 

## Kruskal-Wallis chi-squared = 14, df = 14, p-value = 0.4497 

econdis = list(0.045, 0.045, 0.045, 0.034, 0.048, 0.042, 0.042, 0.043, 0.038, 0.032, 0.042, 0.043, 0.043, 

0.038, 0.032) 

kruskal.test(econdis) 

##  

##  Kruskal-Wallis rank sum test 

##  

## data:  econdis 

## Kruskal-Wallis chi-squared = 14, df = 14, p-value = 0.4497 

econdis = list(0.045, 0.045, 0.045, 0.034, 0.048, 0.042, 0.042, 0.043, 0.038, 0.032, 0.042, 0.043, 0.043, 

0.038, 0.032) 

kruskal.test(econdis) 

##  

##  Kruskal-Wallis rank sum test 

##  
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## data:  econdis 

## Kruskal-Wallis chi-squared = 14, df = 14, p-value = 0.4497 

race = list(0.033, 0.031, 0.032, 0.018, 0.034, 0.029, 0.023, 0.029, 0.027, 0.035, 0.030, 0.04, 0.041, 0.027, 

0.035) 

kruskal.test(race) 

##  

##  Kruskal-Wallis rank sum test 

##  

## data:  race 

## Kruskal-Wallis chi-squared = 14, df = 14, p-value = 0.4497 

total = list(gender, ell, disability, econdis, race) 

kruskal.test(total) 

## Warning in kruskal.test.default(total): some elements of 'x' are not numeric 

## and will be coerced to numeric 

##  

##  Kruskal-Wallis rank sum test 

##  

## data:  total 

## Kruskal-Wallis chi-squared = 68.385, df = 4, p-value = 4.975e-14 

Equalized opportunity for US XGB 

xgbpred <- predict (xgb1,dtest) 

xgbpred <- ifelse (xgbpred >= 0.4,"1", "0") 

 

 

test <- read.csv("test.csv") 

test <- test %>% 

  mutate(across(c("female", "hispanic", "asian", "black", "white", "other_race", "eds", "lep_8", 

"ever_lep", "swd_8", "ever_swd"), as.factor)) 

 

test$pred <- predict(xgb1, dtest, type = 'response') 

 

 

 

#devtools::install_github('kozodoi/fairness') 

library(fairness) 

 

 

## function for a cutoff of 0.4 for all but race 

get_metric <- function(group_name) { 

  result <- equal_odds(data         = test,  

                       outcome      = 'dropout',  

                       outcome_base = '0',  

                       group        = group_name, 
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                       probs        = 'pred',  

                       cutoff       = 0.4,  

                       base         = '0')   

  return(result$Metric) 

} 

 

female_eq_metric <- get_metric('female') 

ell_eq_metric <- get_metric('lep_8') 

swd_eq_metric <- get_metric('swd_8') 

eds_eq_metric <- get_metric('eds') 

## function for race at 0.4 cutoff 

get_metric <- function(group_name) { 

  result <- equal_odds(data         = test,  

                       outcome      = 'dropout',  

                       outcome_base = '0',  

                       group        = group_name, 

                       probs        = 'pred',  

                       cutoff       = 0.4,  

                       base         = '1')   

  return(result$Metric) 

} 

 

white_eq_metric <- get_metric('white') 

 

# Results 

white_eq_metric 

##                           1            0 

## Sensitivity    8.551089e-01 8.752066e-01 

## Equalized odds 1.000000e+00 1.023503e+00 

## Group size     4.976300e+04 4.531400e+04 

female_eq_metric 

##                           0            1 

## Sensitivity    8.896277e-01 8.244444e-01 

## Equalized odds 1.000000e+00 9.267298e-01 

## Group size     4.818000e+04 4.689700e+04 

ell_eq_metric 

##                           0            1 

## Sensitivity    8.703103e-01    0.8204082 

## Equalized odds 1.000000e+00    0.9426616 

## Group size     9.097900e+04 4098.0000000 

swd_eq_metric 

##                           0            1 

## Sensitivity    8.387471e-01 9.323529e-01 
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## Equalized odds 1.000000e+00 1.111602e+00 

## Group size     8.337800e+04 1.169900e+04 

eds_eq_metric 

##                           0            1 

## Sensitivity    7.177419e-01 9.035639e-01 

## Equalized odds 1.000000e+00 1.258898e+00 

## Group size     4.967400e+04 4.540300e+04 

#FPR 

groups <- c('eds', 'female', 'lep_8', 'swd_8') 

for (group in groups) { 

  fpr <- fpr_parity(data = test, outcome = 'dropout', group = group, 

                        probs = 'pred', cutoff = 0.4, base = '0') 

  print(fpr) 

} 

## $Metric 

##                       0            1 

## FPR        7.503355e-02 3.613059e-01 

## FPR Parity 1.000000e+00 4.815258e+00 

## Group size 4.967400e+04 4.540300e+04 

##  

## $Metric_plot 
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##  

## $Probability_plot 

 

##  

## $Metric 

##                       0            1 

## FPR        2.464436e-01 1.717938e-01 

## FPR Parity 1.000000e+00 6.970919e-01 

## Group size 4.818000e+04 4.689700e+04 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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##  

## $Metric 

##                       0            1 

## FPR        2.022292e-01    0.3745134 

## FPR Parity 1.000000e+00    1.8519250 

## Group size 9.097900e+04 4098.0000000 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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##  

## $Metric 

##                       0            1 

## FPR        1.729493e-01 4.794446e-01 

## FPR Parity 1.000000e+00 2.772169e+00 

## Group size 8.337800e+04 1.169900e+04 

##  

## $Metric_plot 
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##  

## $Probability_plot 



 

236 

 

 

fpr_white <- fpr_parity(data = test, outcome = 'dropout', group = 'white', 

probs = 'pred', cutoff = 0.4, base = '1') 

fpr_white 

## $Metric 

##                       1            0 

## FPR        1.520105e-01     0.272583 

## FPR Parity 1.000000e+00     1.793185 

## Group size 4.976300e+04 45314.000000 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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Equalized opportunity for US LGR 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 

test <- read.csv("test.csv") 

 

log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, white,other_race

, eds, lep_8, ever_lep, swd_8, ever_swd)), family='binomial') 

 

predict_log <- predict(log1.m, test[,-1], type = 'response') 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 

## prediction from a rank-deficient fit may be misleading 

# Create a prediction object  

pred <- prediction(predict_log, test$dropout) 

test$pred = predict(log1.m, test, type = "response") 

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : 

## prediction from a rank-deficient fit may be misleading 

library(fairness) 

## function for a cutoff of 0.1 for all but race 

get_metric <- function(group_name) { 

  result <- equal_odds(data         = test,  

                       outcome      = 'dropout',  

                       outcome_base = '0',  
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                       group        = group_name, 

                       probs        = 'pred',  

                       cutoff       = 0.1,  

                       base         = '0')   

  return(result$Metric) 

} 

 

female_eq_metric <- get_metric('female') 

ell_eq_metric <- get_metric('lep_8') 

swd_eq_metric <- get_metric('swd_8') 

eds_eq_metric <- get_metric('eds') 

## function for race at 0.1 cutoff 

get_metric <- function(group_name) { 

  result <- equal_odds(data         = test,  

                       outcome      = 'dropout',  

                       outcome_base = '0',  

                       group        = group_name, 

                       probs        = 'pred',  

                       cutoff       = 0.41,  

                       base         = '1')   

  return(result$Metric) 

} 

 

white_eq_metric <- get_metric('white') 

 

# Results 

white_eq_metric 

##                           1            0 

## Sensitivity    6.616415e-01 6.900826e-01 

## Equalized odds 1.000000e+00 1.042986e+00 

## Group size     4.976300e+04 4.531400e+04 

female_eq_metric 

##                           0            1 

## Sensitivity    9.335106e-01 8.888889e-01 

## Equalized odds 1.000000e+00 9.522001e-01 

## Group size     4.818000e+04 4.689700e+04 

ell_eq_metric 

##                           0            1 

## Sensitivity    9.198703e-01    0.8897959 

## Equalized odds 1.000000e+00    0.9673058 

## Group size     9.097900e+04 4098.0000000 

swd_eq_metric 
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##                           0            1 

## Sensitivity    8.944316e-01 9.735294e-01 

## Equalized odds 1.000000e+00 1.088434e+00 

## Group size     8.337800e+04 1.169900e+04 

eds_eq_metric 

##                           0            1 

## Sensitivity    8.427419e-01 9.360587e-01 

## Equalized odds 1.000000e+00 1.110730e+00 

## Group size     4.967400e+04 4.540300e+04 

#FPR 

groups <- c('eds', 'female', 'lep_8', 'swd_8') 

for (group in groups) { 

  fpr <- fpr_parity(data = test, outcome = 'dropout', group = group, 

                        probs = 'pred', cutoff = 0.1, base = '0') 

  print(fpr) 

} 

## $Metric 

##                       0            1 

## FPR        1.864858e-01 4.350385e-01 

## FPR Parity 1.000000e+00 2.332823e+00 

## Group size 4.967400e+04 4.540300e+04 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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##  

## $Metric 

##                      0            1 

## FPR        3.50737e-01 2.548427e-01 

## FPR Parity 1.00000e+00 7.265920e-01 

## Group size 4.81800e+04 4.689700e+04 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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##  

## $Metric 

##                       0            1 

## FPR        2.959356e-01    0.4692447 

## FPR Parity 1.000000e+00    1.5856313 

## Group size 9.097900e+04 4098.0000000 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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##  

## $Metric 

##                       0            1 

## FPR        2.591545e-01 6.290952e-01 

## FPR Parity 1.000000e+00 2.427491e+00 

## Group size 8.337800e+04 1.169900e+04 

##  

## $Metric_plot 



 

247 

 

 

##  

## $Probability_plot 
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fpr_white <- fpr_parity(data = test, outcome = 'dropout', group = 'white', 

probs = 'pred', cutoff = 0.1, base = '1') 

fpr_white 

## $Metric 

##                       1            0 

## FPR        2.499743e-01 3.616905e-01 

## FPR Parity 1.000000e+00 1.446911e+00 

## Group size 4.976300e+04 4.531400e+04 

##  

## $Metric_plot 
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##  

## $Probability_plot 
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Figure B3: Code for research question 3 

Preparing and running the undersampled XGboost model 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 

test <- read.csv("test.csv") 

 

train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 

y.train = train$dropout %>% unlist() %>% as.numeric() 

y.test = test$dropout %>% unlist() %>% as.numeric() 

x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  

x.test = model.matrix(dropout~., test)[,-1] 

 

# Data preparation 

dtrain <- xgb.DMatrix(data = x.train, label = y.train) 

dtest <- xgb.DMatrix(data = x.test, label = y.test) 

ts_label <- test$dropout 

 

 

# Initial parameter setup (if needed) 

initial_params <- list( 

  booster = "gbtree", 

  objective = "binary:logistic", 

  eval_metric = "logloss", 

  eta = 0.3, 

  max_depth = 6, gamma = 3 

) 

 

# Cross-validation to find optimal rounds of boosting 

cv_results <- xgb.cv( 

  params = initial_params, 

  data = dtrain, 

  nrounds = 100, 

  nfold = 5, 

  early_stopping_rounds = 20, 

  verbose = 1 

) 

 

# Extract the Best Number of Rounds 

best_nrounds <- cv_results$best_iteration 

 

# Train the Final Model with Optimal Parameters 

set.seed(2023) 

final_model <- xgb.train( 

  params = initial_params, 

  data = dtrain, 
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  nrounds = best_nrounds 

) 

 

# Grid search for hyperparameter tuning 

search_grid <- expand.grid( 

  max_depth = c(3, 6), 

  eta = c(0.01, 0.1), 

  colsample_bytree = c(0.5, 0.7) 

) 

 

best_auc <- Inf  # Use Inf for minimization 

best_params <- list() 

 

for (i in 1:nrow(search_grid)) { 

  params <- list( 

    objective = "binary:logistic", 

    eval_metric = "logloss", 

    max_depth = search_grid$max_depth[i], 

    eta = search_grid$eta[i], 

    colsample_bytree = search_grid$colsample_bytree[i] 

  ) 

   

  cv_results <- xgb.cv( 

    params = params, 

    data = dtrain, 

    nfold = 5, 

    nrounds = 100, 

    early_stopping_rounds = 10, 

    verbose = 1 

  ) 

   

  mean_logloss <- min(cv_results$evaluation_log$test_logloss_mean) 

   

  if (mean_logloss < best_auc) { 

    best_auc <- mean_logloss 

    best_params <- params 

    best_nrounds <- cv_results$best_iteration 

  } 

} 

 

# Train the final model with the best parameters 

set.seed(2023) 

xgb1 <- xgb.train (params = best_params, data = dtrain, watchlist = list(val=dtest,train=dtrain), print_eve

ry_n = 10, nrounds = best_nrounds) 

Interpretting the undersampled XGboost model 

mat <- xgb.importance (feature_names = colnames(x.train),model = xgb1) 

xgb.plot.importance (importance_matrix = mat[1:10])  
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# Convert the importance matrix to a data frame for ggplot2 

importance_df <- as.data.frame(mat) 

 

# Define a mapping of old feature names to new feature names 

name_mapping <- c( 

  "age_eighthfall1" = "Age at 8th grade", 

  "ever_chrabsent_middle" = "Chronically absent in a middle grade", 

    "chrabsent_8" = "Chronically absent in 8th grade", 

  "ever_ISS_8" = "ISS in 8th grade", 

  "ever_OSS_8" = "OSS in 8th grade", 

  "ever_OSS_7" = "OSS in 7th grade", 

  "school_mobility_middle" = "School mobility in middle grades", 

  "not_read_proficient_7" = "Not proficient in 7th grade reading", 

   "not_math_proficient_6" = "Not proficient in 6th grade math", 

     "not_math_proficient_8" = "Not proficient in 8th grade math", 

  "ever_ISS_middle" = "ISS in 8th grade", 

  "town" = "School is classified as town", 

  "absence_rate_8" = "8th grade absence rate", 

  "absence_rate_7" = "7th grade absence rate", 

   "absence_rate_6" = "6th grade absence rate", 

  "eds" = "Economically disadvantaged", 

  "ever_stsusp_middle" = "Receiving ST suspension in a middle grade", 

  "not_math_proficient_8" = "Not proficient in 8th grade math", 

  "ever_suspended" = "Suspended in a middle grade", 

  "not_read_proficient_8" = "Not proficient in 8th grade reading", 
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   "not_math_proficient_7" = "Not proficient in 7th grade math" 

) 

 

# Replace old feature names with new feature names 

importance_df$Feature <- ifelse(importance_df$Feature %in% names(name_mapping), 

                                name_mapping[importance_df$Feature], 

                                importance_df$Feature) 

 

#extrafont::loadfonts(device="win") 

 

base_fig <- ggplot(importance_df[1:14, ], aes(x = reorder(Feature, Gain), y = Gain)) + 

  geom_bar(stat = "identity", fill = "steelblue") + 

  coord_flip() + 

  labs(title = "Top XGBoost Model Features by Gain", 

       x = "Feature", 

       y = "Gain") + 

  theme_minimal() + 

  theme(axis.text.y = element_text(size = 10), 

        axis.title = element_text(size = 12), 

        plot.title = element_text(size = 14, face = "bold"), 

        legend.position = "none", windowsFonts(Times=windowsFont("TT Times New Roman")) 

 

) 

base_fig + 

  theme(text = element_text(family = "Times New Roman")) 
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library(iml) 

predictor <- Predictor$new(model = xgb1, data = train, y = train$dropout) 

 

# Compute Shapley values for a single instance (e.g., the first row of X) 

 

library(caret) 

library(kernelshap) 

library(shapviz) 

 

 

#devtools::install_github("liuyanguu/SHAPforxgboost") 

library("SHAPforxgboost") 

 

 

# To return the SHAP values and ranked features by mean|SHAP| 

shap_values <- shap.values(xgb_model = xgb1, x.train) 

 

# The ranked features by mean |SHAP| 

shap_values$mean_shap_score 

##            age_eighthfall1             absence_rate_8  

##                1.183715129                0.430753728  

##             absence_rate_7                        eds  

##                0.330072428                0.295450338  

##      ever_chrabsent_middle             absence_rate_6  

##                0.274359854                0.208614580  

##                 ever_ISS_8         ever_stsusp_middle  

##                0.145924016                0.134095743  

##     school_mobility_middle             ever_suspended  

##                0.110083195                0.104912609  

##      not_math_proficient_7      not_read_proficient_8  

##                0.088865684                0.080230655  

##                chrabsent_8      not_math_proficient_6  

##                0.074105589                0.069114520  

##      not_math_proficient_8                 ever_OSS_7  

##                0.060925299                0.053809065  

##                 ever_OSS_8                      swd_8  

##                0.053234336                0.043047057  

##                       town          school_mobility_8  

##                0.038472891                0.020358813  

##      not_read_proficient_7                 ever_ISS_6  

##                0.018984973                0.017594534  

##                 ever_OSS_6            ever_ISS_middle  

##                0.015166483                0.013973461  

##                   ever_lep            ever_OSS_middle  

##                0.012489851                0.011727669  

##                   suburban      not_read_proficient_6  

##                0.009328411                0.008317310  

##                      lep_8                chrabsent_6  
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##                0.007829356                0.007380275  

## no_math_proficiency_middle no_read_proficiency_middle  

##                0.007072286                0.004742620  

##                   ever_swd                 ever_ISS_7  

##                0.003348294                0.003040845  

##                      rural                      urban  

##                0.002562293                0.001954877  

##                chrabsent_7           chrabsent_middle  

##                0.001918539                0.001610911  

##         ever_ltsusp_middle          school_mobility_7  

##                0.000000000                0.000000000  

##          school_mobility_6  

##                0.000000000 

shap_long <- shap.prep(xgb_model = xgb1, X_train = x.train) 

shapplot <- shap.plot.summary(shap_long) 

shapplot 

 

Preparing for Lasso and Ridge regressions 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 

test <- read.csv("test.csv") 

str(train) 

str(test) 
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train = subset(train, select = -c(female, hispanic, asian, black, white, other_race) )  

test = subset(test, select = -c(female, hispanic, asian, black, white, other_race) )  

 

y.train = train$dropout %>% unlist() %>% as.numeric() 

x.train = model.matrix(dropout~., train)[,-1] #data should only be predictors  

 

dim(x.train) 

dim(x.test) 

 

 

write.csv(x.train,'x.train.csv', row.names=FALSE) 

write.csv(y.train,'y.train.csv', row.names=FALSE) 

Running the undersampled lasso and ridge regressions 

## LASSO 

set.seed(2023) 

cv.lasso <- cv.glmnet(x.train, y.train, alpha = 1, family='binomial') # Fit lasso regression model on 

training data 

 

lasso.coefs <- coef(cv.lasso, s = "lambda.min")  # or use lambda.1se for a more regularized solution 

 

# To view the coefficients in a more readable format (as a dataframe): 

lasso.coefs_df <- as.data.frame(as.matrix(lasso.coefs)) 

lasso.coefs_df <- lasso.coefs_df %>% 

  arrange(desc(s1)) 

print(lasso.coefs_df) 

##                                       s1 

## absence_rate_8               9.367399688 

## absence_rate_7               6.471641131 

## absence_rate_6               3.150566658 

## age_eighthfall1              1.919511878 

## school_mobility_8            0.762946853 

## eds                          0.711248725 

## ever_lep                     0.699603902 

## not_math_proficient_7        0.552257508 

## ever_ISS_8                   0.531284949 

## not_math_proficient_6        0.509319947 

## ever_chrabsent_middle        0.446116657 

## ever_stsusp_middle           0.397142100 

## school_mobility_middle       0.363591181 

## not_math_proficient_8        0.305526867 

## town                         0.270230335 

## ever_ISS_6                   0.245130525 

## not_read_proficient_8        0.222794540 

## ever_OSS_7                   0.218125213 

## ever_OSS_8                   0.115798068 

## school_mobility_6            0.095530800 
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## ever_ltsusp_middle           0.041073734 

## ever_suspended               0.031405622 

## urban                        0.005775141 

## ever_OSS_middle              0.000000000 

## ever_ISS_middle              0.000000000 

## not_read_proficient_6        0.000000000 

## no_read_proficiency_middle   0.000000000 

## ever_swd                     0.000000000 

## chrabsent_8                  0.000000000 

## chrabsent_middle             0.000000000 

## school_mobility_7            0.000000000 

## rural                        0.000000000 

## ever_ISS_7                  -0.008853850 

## suburban                    -0.090386220 

## not_read_proficient_7       -0.101199956 

## swd_8                       -0.196432972 

## chrabsent_6                 -0.197540613 

## ever_OSS_6                  -0.240537592 

## chrabsent_7                 -0.394023042 

## no_math_proficiency_middle  -0.687711542 

## lep_8                       -0.692154631 

## (Intercept)                -30.906457591 

write.csv(lasso.coefs_df, "lasso.smote.coefs.csv", row.names = TRUE) 

 

## RIDGE 

set.seed(2023) 

cv.ridge <- cv.glmnet(x.train, y.train, alpha = 0, family='binomial') # Fit ridge regression model on 

training data 

 

# Extract the coefficients at the best lambda (lambda.min or lambda.1se) 

ridge.coefs <- coef(cv.ridge, s = "lambda.min")  # or use lambda.1se for a more regularized solution 

 

# View the coefficients 

ridge.coefs_df <- as.data.frame(as.matrix(ridge.coefs)) 

ridge.coefs_df <- ridge.coefs_df %>% 

  arrange(desc(s1)) 

print(ridge.coefs_df) 

##                                       s1 

## absence_rate_8               4.019117804 

## absence_rate_7               3.793818048 

## absence_rate_6               3.078968714 

## age_eighthfall1              1.340412716 

## school_mobility_8            0.684564638 

## eds                          0.589478997 

## ever_chrabsent_middle        0.450851208 

## ever_ltsusp_middle           0.434884287 

## chrabsent_8                  0.406745204 
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## not_math_proficient_7        0.379000722 

## ever_ISS_8                   0.376820712 

## ever_lep                     0.357693708 

## not_math_proficient_6        0.333044826 

## not_math_proficient_8        0.324102371 

## school_mobility_middle       0.280548309 

## school_mobility_6            0.255287010 

## ever_OSS_7                   0.243330189 

## town                         0.238160809 

## not_read_proficient_8        0.232533659 

## ever_OSS_8                   0.192493260 

## ever_OSS_middle              0.174942398 

## ever_stsusp_middle           0.173030003 

## ever_ISS_6                   0.172409246 

## not_read_proficient_6        0.114398942 

## ever_swd                     0.104089649 

## ever_suspended               0.100830121 

## ever_ISS_middle              0.093267749 

## chrabsent_7                  0.014119038 

## urban                        0.008271267 

## chrabsent_middle            -0.020081707 

## chrabsent_6                 -0.029856129 

## rural                       -0.034946480 

## ever_ISS_7                  -0.038168593 

## not_read_proficient_7       -0.046164099 

## no_read_proficiency_middle  -0.052569972 

## school_mobility_7           -0.052874225 

## suburban                    -0.088514173 

## swd_8                       -0.113696765 

## ever_OSS_6                  -0.161602334 

## lep_8                       -0.258671378 

## no_math_proficiency_middle  -0.304471721 

## (Intercept)                -22.368243059 

write.csv(ridge.coefs_df, "ridge.smote.coefs.csv", row.names = TRUE) 

Running the undersampled Random Forest 

# Running RF 

set.seed(2023) 

RF.dropout <- randomForest(dropout ~ ., data = train, ntree = 100, importance = TRUE) 

## Warning in randomForest.default(m, y, ...): The response has five or fewer 

## unique values.  Are you sure you want to do regression? 

print(RF.dropout) 

##  

## Call: 
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##  randomForest(formula = dropout ~ ., data = train, ntree = 100,      importance = TRUE)  

##                Type of random forest: regression 

##                      Number of trees: 100 

## No. of variables tried at each split: 13 

##  

##           Mean of squared residuals: 0.1111992 

##                     % Var explained: 55.52 

varImpPlot(RF.dropout,n.var=min(15, nrow(RF.dropout$importance)), type=NULL, class=NULL, 

scale=TRUE) 

 

importance(RF.dropout) 

##                                 %IncMSE IncNodePurity 

## ever_stsusp_middle          7.357801552   23.03567126 

## ever_ltsusp_middle          0.000000000    0.02645886 

## ever_OSS_6                  3.011104964    3.04166274 

## ever_OSS_7                  4.885170317    5.27615004 

## ever_OSS_8                  4.372833450    6.22498879 

## ever_OSS_middle             6.822605874   15.83789509 

## ever_ISS_middle             5.238630202    5.07931276 

## ever_ISS_6                  2.843352651    4.45979083 

## ever_ISS_7                  3.923779699    5.20951590 

## ever_ISS_8                  6.041411416    6.28624668 

## not_math_proficient_6       4.374896357    8.02647551 
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## not_math_proficient_7       7.641696211    9.02598334 

## not_math_proficient_8       5.619537707    6.73327242 

## no_math_proficiency_middle  0.597667263    3.07844779 

## not_read_proficient_6       5.361775300    7.83358303 

## not_read_proficient_7       5.126090763    7.56060598 

## not_read_proficient_8       6.595685135    9.03686084 

## no_read_proficiency_middle  5.453730668    4.62100027 

## eds                        12.353052044   17.68302315 

## age_eighthfall1            55.308823205  221.80200689 

## ever_swd                   -0.314064360    4.60125657 

## swd_8                      -2.017342949    4.57285834 

## ever_lep                    5.037565831    4.17305636 

## lep_8                       2.472650218    4.54003225 

## absence_rate_6             16.821171955   44.21367875 

## absence_rate_7             15.134229519   71.86635305 

## absence_rate_8             16.501284923   80.22064527 

## chrabsent_6                 2.077164161    2.22124475 

## chrabsent_7                 1.669718593    2.02149604 

## chrabsent_8                 5.604564115   12.27762659 

## ever_chrabsent_middle       9.695786815   65.62614747 

## chrabsent_middle           -2.062052328    0.73220428 

## school_mobility_middle      3.831014208   10.29501623 

## school_mobility_8           5.195899455    1.67606163 

## school_mobility_7           0.310168666    0.78588163 

## school_mobility_6           0.447620569    1.37300890 

## urban                       0.183004385    6.13505405 

## suburban                    1.633137098    6.44602829 

## town                       -0.951965923    5.13384612 

## rural                       0.005143379    6.79848137 

## ever_suspended              6.953041375    8.45884022 

Running the undersampled Logistic regression 

train <- read.csv("D:/NCERDC_DATA/Alam/ML/undersampletrain.csv") 

 

# Fit the logistic regression model 

log1.m <- glm(dropout ~ ., data = subset(train, select = -c(female, hispanic, asian, black, white, other_rac

e)), family = 'binomial') 

summary(log1.m) 

##  

## Call: 

## glm(formula = dropout ~ ., family = "binomial", data = subset(train,  

##     select = -c(female, hispanic, asian, black, white, other_race))) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -3.6099  -0.4793  -0.0425   0.3986   2.8545   

##  
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## Coefficients: (2 not defined because of singularities) 

##                             Estimate Std. Error z value Pr(>|z|)     

## (Intercept)                -31.98031    1.79009 -17.865  < 2e-16 *** 

## ever_stsusp_middle           0.42797    0.32696   1.309 0.190561     

## ever_ltsusp_middle           0.95081    1.58589   0.600 0.548810     

## ever_OSS_6                  -0.40687    0.22344  -1.821 0.068610 .   

## ever_OSS_7                   0.24676    0.22251   1.109 0.267430     

## ever_OSS_8                   0.11029    0.22510   0.490 0.624163     

## ever_OSS_middle                   NA         NA      NA       NA     

## ever_ISS_middle             -0.05401    0.29571  -0.183 0.855075     

## ever_ISS_6                   0.34776    0.23926   1.453 0.146087     

## ever_ISS_7                  -0.09817    0.18527  -0.530 0.596205     

## ever_ISS_8                   0.59844    0.17122   3.495 0.000474 *** 

## not_math_proficient_6        0.69017    0.21998   3.137 0.001704 **  

## not_math_proficient_7        0.75114    0.21309   3.525 0.000424 *** 

## not_math_proficient_8        0.35258    0.17201   2.050 0.040386 *   

## no_math_proficiency_middle  -1.02751    0.31315  -3.281 0.001033 **  

## not_read_proficient_6       -0.04529    0.24213  -0.187 0.851623     

## not_read_proficient_7       -0.25915    0.17853  -1.452 0.146613     

## not_read_proficient_8        0.26872    0.15985   1.681 0.092750 .   

## no_read_proficiency_middle   0.11145    0.29008   0.384 0.700832     

## eds                          0.75157    0.12353   6.084 1.17e-09 *** 

## age_eighthfall1              1.97810    0.10924  18.108  < 2e-16 *** 

## ever_swd                     0.27628    0.34247   0.807 0.419821     

## swd_8                       -0.53111    0.36159  -1.469 0.141881     

## ever_lep                     1.38435    0.52323   2.646 0.008150 **  

## lep_8                       -1.44213    0.56131  -2.569 0.010193 *   

## absence_rate_6               4.07835    1.79960   2.266 0.023436 *   

## absence_rate_7               7.59319    1.89950   3.997 6.40e-05 *** 

## absence_rate_8              10.23255    1.82863   5.596 2.20e-08 *** 

## chrabsent_6                 -0.62118    0.34927  -1.778 0.075323 .   

## chrabsent_7                 -0.81284    0.32747  -2.482 0.013057 *   

## chrabsent_8                 -0.34491    0.34974  -0.986 0.324041     

## ever_chrabsent_middle        0.84825    0.36509   2.323 0.020156 *   

## chrabsent_middle             0.31961    0.58433   0.547 0.584404     

## school_mobility_middle       0.39525    0.12521   3.157 0.001595 **  

## school_mobility_8            0.87265    0.50490   1.728 0.083923 .   

## school_mobility_7           -0.22066    0.58291  -0.379 0.705015     

## school_mobility_6            0.19069    0.53461   0.357 0.721325     

## urban                        0.04086    0.14124   0.289 0.772356     

## suburban                    -0.11058    0.14925  -0.741 0.458752     

## town                         0.34076    0.20092   1.696 0.089882 .   

## rural                             NA         NA      NA       NA     

## ever_suspended               0.06706    0.27385   0.245 0.806536     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  
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##     Null deviance: 4300.3  on 3101  degrees of freedom 

## Residual deviance: 2039.7  on 3062  degrees of freedom 

## AIC: 2119.7 

##  

## Number of Fisher Scoring iterations: 7 

  



 

264 

 

BIBLIOGRAPHY 

Agasisti, T., & Bowers, A. J. (2017). Data analytics and decision making in education: towards 

the educational data scientist as a key actor in schools and higher education institutions. 

In Handbook of contemporary education economics (pp. 184-210). Edward Elgar Publishing. 

Ali, A., Shamsuddin, S. M., & Ralescu, A. L. (2013). Classification with class imbalance 

problem. Int. J. Advance Soft Compu. Appl, 5(3), 176-204. 

Allensworth, E. M., & Easton, J. Q. (2007). What Matters for Staying On-Track and Graduating 

in Chicago Public High Schools: A Close Look at Course Grades, Failures, and Attendance 

in the Freshman Year. Research Report. Consortium on Chicago School Research. 

Allensworth, E. M. (2013). The use of ninth grade early warning indicators to improve Chicago 

schools. Journal of Education for Students Placed at Risk, 18(1), 68–83. 

Allensworth E., Gwynne J., Moore P., de la Torre M. (2014). Looking forward to high school 

and college: Middle grade indicators of readiness in Chicago Public Schools. Chicago, IL: 

University of Chicago Consortium on Chicago School Research. 

Allensworth, E. M., Nagaoka, J., & Johnson, D. W. (2018). High School Graduation and College 

Readiness Indicator Systems: What We Know, What We Need to Know. Concept Paper for 

Research and Practice. University of Chicago Consortium on School Research. 

Allensworth, E. M., & Clark, K. (2019). Are GPAs An Inconsistent Measure Of College 

Readiness Across High Schools? Examining Assumptions About Grades Versus 

Standardized Test Scores. University Of Chicago Consortium On School Research. 

Anderson, H., Boodhwani, A., & Baker, R. S. (2019). Assessing the Fairness of Graduation 

Predictions. In EDM. 

Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student 

performance based on the machine learning XGBoost algorithm. Interactive Learning 

Environments, 31(6), 3360-3379. 

Babar, V. S., & Ade, R. (2015). A review on imbalanced learning methods. Int. J. Comput. 

Appl, 975(2), 23-27. 



 

265 

 

Baker, R. S., & Hawn, A. (2022). Algorithmic bias in education. International Journal of 

Artificial Intelligence in Education, 32.  

Baker, R. S., Esbenshade, L., Vitale, J., & Karumbaiah, S. (2023a). Using Demographic Data as 

Predictor Variables: A Questionable Choice. Journal of Educational Data Mining, 15(2), 22-

52. 

Baker, R., Hawn, M.A., Lee, S. (2023b). Algorithmic bias: the state of the situation and policy 

recommendations, in OECD Digital Education Outlook 2023: Towards an Effective Digital 

Education Ecosystem, OECD Publishing, Paris. 

Baker, R.S. (in press) Algorithmic Bias in Education and Steps Towards Fairness. In A.S. Wells, 

E.N. Walker (Eds.) Learning and Thriving Across the Lifespan: The 100-Year Intellectual 

Legacy of Professor Edmund Gordon. 

Bala, N. (2019). The Danger of Facial Recognition in Our Children's Classrooms. Duke L. & 

Tech. Rev., 18, 249. 

Balfanz, R., Herzog, L., & Mac Iver, D. J. (2007). Preventing Student Disengagement And 

Keeping Students On The Graduation Path In Urban Middle-Grades Schools: Early 

Identification And Effective Interventions. Educational Psychologist, 42(4), 223-235. 

Balfanz, R. (2009). Putting middle grades students on the graduation path. Policy and practice 

brief. 

Balfanz, R., & Byrnes, V. (2012). The importance of being there: A report on absenteeism in the 

nation’s public schools. Baltimore, MD: Baltimore: Johns Hopkins University Center for 

Social Organization of Schools.  

Balfanz, R., Byrnes, V., & Fox, J. H. (2014). Sent home and put off track: The antecedents, 

disproportionalities, and consequences of being suspended in the ninth grade. Journal of 

Applied Research on Children, 5. 

Balfanz, R., Byrnes, V., & Fox, J. H. (2015). Sent home and put off track. Closing the school 

discipline gap: Equitable remedies for excessive exclusion, 17-30. 



 

266 

 

Balfanz, R., & Byrnes, V. (2018). Using data and the human touch: Evaluating the NYC 

interagency campaign to reduce chronic absenteeism. Journal of Education for Students 

Placed at Risk (JESPAR), 23, 107-121.  

Balfanz, R. (2016). Missing school matters. Phi Delta Kappan, 98(2), 8-13. 

Balu, R. & Ehrlich, S. B. (2018) Making sense out of incentives: A framework for considering 

the design, use, and implementation of incentives to improve attendance, Journal of 

Education for Students Placed at Risk, 23, 93-106. 

Balu, R., Porter, K., & Gunton, B. (2016). Can informing parents help high school students show 

up for school. Policy Brief. New York, NY: MDRC. 

Belfield, C. R., & Levin, H. M. (Eds.). (2007). The price we pay: Economic and social 

consequences of inadequate education. Brookings Institution Press. 

Bishop, C.M., Bishop, H., & Cham, S. (2023). Deep Learning: Foundations and Concepts. 

Hardback. ISBN 978-3031454677. 

Bowers, A. (2009), “Reconsidering grades as data for decision making: more than just academic 

knowledge”, Journal of Educational Administration, Vol. 47/5. 

Bowers, A. J. (2010). Grades And Graduation: A Longitudinal Risk Perspective To Identify 

Student Dropouts. The Journal Of Educational Research, 103 (3), 191–207.  

Bowers, A.J., Sprott, R. (2012a) Why Tenth Graders Fail to Finish High School: A Dropout 

Typology Latent Class Analysis. The Journal of Education for Students Placed at Risk 

(JESPAR), 17(3), 129-148.  

Bowers, A.J., Sprott, R. (2012b) Examining the Multiple Trajectories Associated with Dropping 

Out of High School: A Growth Mixture Model Analysis. The Journal of Educational 

Research, 105(3), 176-195. 

Bowers, A. J., Sprott, R., & Taff, S. A. (2013). Do we know who will drop out?: A review of the 

predictors of dropping out of high school: Precision, sensitivity, and specificity. The High 

School Journal, 96(2), 77-100. 



 

267 

 

Bowers, A. J. (2019). Analyzing the longitudinal K-12 grading histories of entire cohorts of 

students: Grades, data driven decision making, dropping out and hierarchical cluster 

analysis. Practical Assessment, Research, and Evaluation, 15(1), 7. 

Bowers, A. J., & Zhou, X. (2019). Receiver operating characteristic (ROC) area under the curve 

(AUC): A diagnostic measure for evaluating the accuracy of predictors of education 

outcomes. Journal of Education for Students Placed at Risk (JESPAR), 24(1), 20-46. 

Bowers, A.J. (2021) Early Warning Systems and Indicators of Dropping Out of Upper Secondary 

School: The Emerging Role of Digital Technologies. OECD Digital Education Outlook 

2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots, Chapter 9, 

p.173-194. OECD Publishing, Paris.   

Bowers, A. J., & Choi, Y. (2023). Building school data equity, infrastructure, and capacity 

through FAIR data standards: Findable, Accessible, Interoperable, and 

Reusable. Educational Researcher, 52(7), 450-458. 

Belfield, C. R., & Levin, H. M. (Eds.). (2007). The price we pay: Economic and social 

consequences of inadequate education. Brookings Institution Press. 

Borman, G. D., Rozek, C. S., Pyne, J., & Hanselman, P. (2019). Reappraising academic and 

social adversity improves middle school students’ academic achievement, behavior, and 

well-being. Proceedings of the National Academy of Sciences, 116(33), 16286-16291. 

Burke, A. (2015). Early Identification Of High School Graduation Outcomes In Oregon 

Leadership Network Schools. Rel 2015-079. Regional Educational Laboratory Northwest. 

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). DBSMOTE: density-based 

synthetic minority over-sampling technique. Applied Intelligence, 36, 664-684. 

Butler, M. A. (1990). Rural-urban continuum codes for metro and nonmetro counties. US 

Department of Agriculture, Economic Research Service, Agriculture and Rural Economy 

Division.  

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. 



 

268 

 

Brookhart, S., T. Guskey, A. Bowers, J. McMillan, J. Smith, L. Smith, M. Stevens and M. Welsh 

(2016), “A Century of Grading Research”. Review of Educational Research, Vol. 86/4. 

Brown, G. (2017). Ensemble Learning. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of 

Machine Learning and Data Mining. Springer, Boston, MA.  

Canbolat, Y. (2024). Early Warning for Whom? Regression Discontinuity Evidence From the 

Effect of Early Warning System on Student Absence. Educational Evaluation and Policy 

Analysis, 01623737231221503. 

Cannistrà, M., Masci, C., Ieva, F., Agasisti, T., & Paganoni, A. M. (2022). Early-predicting 

dropout of university students: an application of innovative multilevel machine learning and 

statistical techniques. Studies in Higher Education, 47(9), 1935-1956.  

Casillas, A., Robbins, S., Allen, J., Kuo, Y.-L., Hanson, M. A., & Schmeiser, C. (2012). 

Predicting early academic failure in high school from prior academic achievement, 

psychosocial characteristics, and behavior. Journal of Educational Psychology, 104(2), 407–

420.   

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic 

minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. 

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. 

In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and 

data mining (pp. 785-794). 

Chung, J. Y., & Lee, S. (2019). Dropout early warning systems for high school students using 

machine learning. Children and Youth Services Review, 96, 346-353. 

Colak Oz, H., Güven, Ç., & Nápoles, G. (2023). School dropout prediction and feature 

importance exploration in Malawi using household panel data: machine learning approach. 

Journal of Computational Social Science, 6(1), 245-287. 

Cook, J., & Ramadas, V. (2020). When to consult precision-recall curves. The Stata 

Journal, 20(1), 131-148.  



 

269 

 

Coleman, C., Baker, R. S., & Stephenson, S. (2019). A Better Cold-Start for Early Prediction of 

Student At-Risk Status in New School Districts. International Educational Data Mining 

Society. 

Coleman, C. J. (2021). Exploring A Generalizable Machine Learned Solution For Early 

Prediction Of Student At-Risk Status. Columbia University. 

Cook, J., & Ramadas, V. (2020). When to consult precision-recall curves. The Stata 

Journal, 20(1), 131-148. 

Corbett-Davies, S., Gaebler, J., Nilforoshan, H., Shroff, R., & Goel, S. (2023). The measure and 

mismeasure of fairness. Journal of Machine Learning Research, 24(312), 1–117. 

Cortes, K. E., & Goodman, J. S. (2014). Ability-tracking, instructional time, and better 

pedagogy: The effect of double-dose algebra on student achievement. American Economic 

Review, 104(5), 400-405. 

Crofton, M., & Neild, R. C. (2018). Getting on Track to Graduation: Ninth Graders' Credit 

Accumulation in the School District of Philadelphia, 2015-2017. Starting Strong: A Research 

Series on the Transition to High School. Philadelphia Education Research Consortium. 

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. Ensemble machine learning: 

Methods and applications, 157-175. 

Daggett, L. M. (2020). Female Student Patient" Privacy" at Campus Health Clinics: Realities and 

Consequences. U. Balt. L. Rev., 50, 77. 

Dalton, B., Glennie, E., & Ingles, S. J. (2009). Late high school dropouts: Characteristics, 

experiences, and changes across cohorts. (NCES 2009–307). Washington, DC: National 

Center for Education Statistics, Institute of Education Sciences, U.S. Department of 

Education.  

Davis, L. P., & Museus, S. D. (2019). What is deficit thinking? An analysis of conceptualizations 

of deficit thinking and implications for scholarly research. NCID Currents, 1(1). 

Dee, T. S. (2004). Are there civic returns to education? Journal of public economics, 88(9-10), 

1697-1720.  



 

270 

 

Dee, T. S. (2023). Where the kids went: Nonpublic schooling and demographic change during 

the pandemic exodus from public schools. Teachers College Record, 125(6), 119-129. 

Doll, J. J., Eslami, Z., & Walters, L. (2013). Understanding why students drop out of high 

school, according to their own reports: Are they pushed or pulled, or do they fall out? A 

comparative analysis of seven nationally representative studies. Sage Open, 3(4). 

Dunkelau, J., & Duong, M. K. (2022). Towards equalised odds as fairness metric in academic 

performance prediction. arXiv preprint arXiv:2209.14670.  

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. 

In Proceedings of the 3rd innovations in theoretical computer science conference (pp. 214–

226). 

Easton, J. Q., Johnson, E., & Sartain, L. (2017). The predictive power of ninth-grade 

GPA. Chicago, IL: University of Chicago Consortium on School Research, 2018-10. 

Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. D. (2022). Mixed Models. In Regression: Models, 

Methods and Applications (pp. 367-430). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Faria, A. M., Sorensen, N., Heppen, J., Bowdon, J., Taylor, S., Eisner, R., & Foster, S. (2017). 

Getting Students on Track for Graduation: Impacts of the Early Warning Intervention and 

Monitoring System after One Year. REL 2017-272. Regional Educational Laboratory 

Midwest. 

Fassett, K. T., Wolcott, M. D., Harpe, S. E., & McLaughlin, J. E. (2022). Considerations for 

writing and including demographic variables in education research. Currents in Pharmacy 

Teaching and Learning, 14(8), 1068-1078. 

Feathers, T. (2023a, April 27). False alarm: How Wisconsin uses race and income to label 

students high risk. The Markup. https://themarkup.org/machine-learning/2023/04/27/false-

alarm-how-wisconsin-uses-race-and-income-to-label-students-high-risk 

Feathers, T. (2023b, May 11). Takeaways from our investigation into Wisconsin’s racially 

inequitable dropout algorithm. The Markup. https://themarkup.org/the-

https://themarkup.org/machine-learning/2023/04/27/false-alarm-how-wisconsin-uses-race-and-income-to-label-students-high-risk
https://themarkup.org/machine-learning/2023/04/27/false-alarm-how-wisconsin-uses-race-and-income-to-label-students-high-risk
https://themarkup.org/the-breakdown/2023/04/27/takeaways-from-our-investigation-into-wisconsins-racially-inequitable-dropout-algorithm


 

271 

 

breakdown/2023/04/27/takeaways-from-our-investigation-into-wisconsins-racially-

inequitable-dropout-algorithm 

Feng, W., Huang, W., & Ren, J. (2018). Class imbalance ensemble learning based on the margin 

theory. Applied Sciences, 8(5), 815. 

Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from 

imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of 

artificial intelligence research, 61, 863-905. 

Flach, P., & Kull, M. (2015). Precision-recall-gain curves: PR analysis done right. Advances in 

neural information processing systems, 28. 

Frazelle, S., & Nagel, A. (2015). A Practitioner's Guide to Implementing Early Warning 

Systems. REL 2015-056. Regional Educational Laboratory Northwest. 

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School Engagement: Potential of the 

Concept, State of the Evidence. Review of Educational Research, 74(1), 59–109.   

Freeman, J., & Simonsen, B. (2015). Examining the impact of policy and practice interventions 

on high school dropout and school completion rates: A systematic review of the 

literature. Review of educational research, 85(2), 205-248. 

Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N., ... & Yang, J. 

(2023). glmnet: Lasso and elastic-net regularized generalized linear models. Astrophysics 

Source Code Library, ascl-2308. 

Galligan, C., Rosenfeld, H., Kleinman, M., & Parthasarathy, S. (2020). Cameras in the 

classroom: Facial recognition technology in schools. 

Geverdt, D., & Nixon, L. (2018). Sidestepping The Box: Designing A Supplemental Poverty 

Indicator For School Neighborhoods (Nces 2017-039). Us Department Of Education. 

Washington, Dc: National Center For Education Statistics. National Center For Education 

Statistics, Washington, DC. 

https://themarkup.org/the-breakdown/2023/04/27/takeaways-from-our-investigation-into-wisconsins-racially-inequitable-dropout-algorithm
https://themarkup.org/the-breakdown/2023/04/27/takeaways-from-our-investigation-into-wisconsins-racially-inequitable-dropout-algorithm


 

272 

 

Geverdt, D. (2017). Education Demographic and Geographic Estimates (EDGE) Geocodes: 

Public Schools and Local Education Agencies, 2015-2016 (NCES 2017-041). U.S. 

Department of Education. Washington, DC: National Center for Education Statistics.  

Gong, X., Hu, M., & Zhao, L. (2018). Big data toolsets to pharmacometrics: application of 

machine learning for time‐to‐event analysis. Clinical and translational science, 11(3), 305-

311. 

Goodman, J., Cortes, K., & Nomi, T. (2013). A Double Dose of Algebra (No. 95911). 

Gottfried, M. A. (2014). Chronic absenteeism and its effects on students’ academic and 

socioemotional outcomes. Journal of Education for Students Placed at Risk (JESPAR), 19(2), 

53-75.  

Gottfried, M. A. (2015). Chronic absenteeism in the classroom context: Effects on achievement. 

Urban Education, 1-32.  

Gottfried, M. A. (2017). Linking getting to school with going to school. Educational Evaluation 

and Policy Analysis, 39, 571-592. 

Gubbels, J., van der Put, C. E., & Assink, M. (2019). Risk factors for school absenteeism and 

dropout: A meta-analytic review. Journal of youth and adolescence, 48, 1637-1667. 

Gutierrez-Pachas, D. A., Garcia-Zanabria, G., Cuadros-Vargas, E., Camara-Chavez, G., & 

Gomez-Nieto, E. (2023). Supporting Decision-Making Process on Higher Education Dropout 

by Analyzing Academic, Socioeconomic, and Equity Factors through Machine Learning and 

Survival Analysis Methods in the Latin American Context. Education Sciences, 13(2), 154. 

Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: a new over-sampling method 

in imbalanced data sets learning. International conference on intelligent computing (pp. 878-

887). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised 

learning. Advances in neural information processing systems, 29. 

Harwell, M., & Lebeau, B. (2010). Student Eligibility For A Free Lunch As SES Measure In 

Education Research. Educational Researcher, 39 (2), 120–131. 



 

273 

 

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009a). 

Random forests. The elements of statistical learning: Data mining, inference, and prediction, 

587-604. 

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009b). 

Ensemble learning. The elements of statistical learning: data mining, inference, and 

prediction, 605-624. 

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with 

sparsity. Monographs on statistics and applied probability, 143(143), 8. 

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach 

for imbalanced learning. 2008 IEEE international joint conference on neural networks (IEEE 

world congress on computational intelligence) (pp. 1322-1328). IEEE. 

He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on 

Knowledge and Data Engineering. 

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal 

problems. Technometrics, 12(1), 55-67. 

Huang, Y., Li, J., Li, M., & Aparasu, R. R. (2023). Application of machine learning in predicting 

survival outcomes involving real-world data: a scoping review. BMC medical research 

methodology, 23(1), 268. 

Humm Patnode, A., Gibbons, K., & Edmunds, R. R. (2018). Attendance and Chronic 

Absenteeism: Literature Review. Saint Paul, MN: University of Minnesota, College of 

Education and Human Development, Center for Applied Research and Educational 

Improvement.  

Intellispark. (n.d.). From early warning to early action. Intellispark. 

https://www.intellispark.com/blog/from-early-warning-to-early-action 

Jackson, C. K. (2010). The effects of an incentive-based high-school intervention on college 

outcomes (No. w15722). National Bureau of Economic Research. 

https://www.intellispark.com/blog/from-early-warning-to-early-action


 

274 

 

Jackson C. K. (2018). What do test scores miss? The importance of teacher effects on non-test 

score outcomes. Journal of Political Economy, 126, 2072–2107. 

Jackson, C. K. (2018). What do test scores miss? The importance of teacher effects on non–test 

score outcomes. Journal of Political Economy, 126(5), 2072-2107. 

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Statistical learning. In An 

Introduction to Statistical Learning: with Applications in Python (pp. 15-67). Cham: Springer 

International Publishing. 

Jens, C., Page, T. B., & Reeder III, J. C. (2022). Controlling for group-level heterogeneity in 

causal forest. 

Jiang, W., & Pardos, Z. A. (2021). Towards equity and algorithmic fairness in student grade 

prediction. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society 

(pp. 608–617). 

Kahlenberg, R. D. (2004). All Together Now: Creating Middle-Class Schools Through Public 

School Choice. Rowman & Littlefield. 

Kasem, A., Ammar Ghaibeh, A., & Moriguchi, H. (2017). Empirical study of sampling methods 

for classification in imbalanced clinical datasets. In Computational Intelligence in 

Information Systems: Proceedings of the Computational Intelligence in Information Systems 

Conference (CIIS 2016) (pp. 152-162). Springer International Publishing. 

Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble learning and data 

augmentation models for class imbalanced problems: Combination, implementation and 

evaluation. Expert Systems with Applications, 244, 122778. 

Kieffer M.J., Marinell W.H., Stephenson N.S. (2011). The middle grades student transitions 

study: Navigating the middle grades and preparing students for high school graduation. New 

York, NY: New York University, Steinhardt School of Education, The Research Alliance for 

New York City Schools. 

Knowles, J. E. (2015). Of Needles and Haystacks: Building an Accurate Statewide Dropout 

Early Warning System in Wisconsin. Journal of Educational Data Mining, 7(3), 18-67. 



 

275 

 

Kolasseri, A. E. (2024). Comparative study of machine learning and statistical survival models 

for enhancing cervical cancer prognosis and risk factor assessment using SEER 

data. Scientific Reports, 14(1), 22203. 

Kotsiantis, S. B., Pierrakeas, C. J., & Pintelas, P. E. (2003). Preventing student dropout in 

distance learning using machine learning techniques. In Knowledge-Based Intelligent 

Information and Engineering Systems: 7th International Conference, KES 2003, Oxford, UK, 

September 2003. Proceedings, Part II 7 (pp. 267-274). Springer Berlin Heidelberg. 

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. 

Progress in Artificial Intelligence 

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: 

Springer. 

Kroese, D. P., Botev, Z., Taimre, T., & Vaisman, R. (2019). Data Science And Machine 

Learning: Mathematical And Statistical Methods. CRC Press. 

Kruger, J. G. C., De Souza Britto Jr, A., & Barddal, J. P. (2023). An Explainable Machine 

Learning Approach For Student Dropout Prediction. Expert Systems With Applications, 233, 

120933.  

Kunapuli, G. (2023). Ensemble methods for machine learning. Simon and Schuster. 

Lee, S., & Chung, J. Y. (2019). The Machine Learning-Based Dropout Early Warning System 

For Improving The Performance Of Dropout Prediction. Applied Sciences, 9 (15), 3093.  

Lee, H., & Kizilcec, R. F. (2020). Evaluation of fairness trade-offs in predicting student 

success. arXiv preprint arXiv:2007.00088. 

Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A Survey On Addressing 

High-Class Imbalance In Big Data. Journal Of Big Data, 5 (1), 1–30.  

Lin, W. C., Tsai, C. F., Hu, Y. H., & Jhang, J. S. (2017). Clustering-based undersampling in 

class-imbalanced data. Information Sciences, 409, 17-26. 

Losen, D., Orfield, G., & Balfanz, R. (2006). Confronting The Graduation Rate Crisis In Texas. 

Civil Rights Project At Harvard University. 



 

276 

 

Loukina, A., Madnani, N., & Zechner, K. (2019). The many dimensions of algorithmic fairness 

in educa tional applications. In Proceedings of the Fourteenth Workshop on Innovative Use 

of NLP for Build ing Educational Applications (pp. 1–10). 

Lunardon, N., Menardi, G., and Torelli, N. (2014). ROSE: a Package for Binary Imbalanced 

Learning. R Jorunal, 6:82–92. 

Lundberg., S., & Lee, S.I. (2017). A unified approach to interpreting model 

predictions. Advances in neural information processing systems, 30, 4765-4774. 

Mani, I., & Zhang, I. (2003). kNN approach to unbalanced data distributions: a case study 

involving information extraction. Proceedings of workshop on learning from imbalanced 

datasets (Vol. 126, No. 1, pp. 1-7). ICML. 

Mac Iver, M. A. (2013). Early warning indicators of high school outcomes. Journal of Education 

for Students Placed at Risk (JESPAR), 18(1), 1-6. 

Mac Iver, M. A., & Messel, M. (2013). The ABCs of keeping on track to graduation: Research 

findings from Baltimore. Journal of Education for Students Placed at Risk (JESPAR), 18(1), 

50-67. 

Mac Iver, M. A., Stein, M. L., Davis, M. H., Balfanz, R. W., & Fox, J. H. (2019). An efficacy 

study of a ninth-grade early warning indicator intervention. Journal of Research on 

Educational Effectiveness, 12(3), 363-390. 

McFarland, J., Cui, J., Rathbun, A., & Holmes, J. (2018). Trends in High School Dropout and 

Completion Rates in the United States: 2018. Compendium Report. NCES 2019-

117. National Center for Education Statistics. 

McLaughlin, J. E., McLaughlin, G. W., McLaughlin, J. S., & White, C. Y. (2016). Using 

Simpson’s diversity index to examine multidimensional models of diversity in health 

professions education. International journal of medical education, 7, 1. 

Mduma, N., Kalegele, K., & Machuve, D. (2019). A survey of machine learning approaches and 

techniques for student dropout prediction. doi: 5334/dsj-2019-014 



 

277 

 

Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with imbalanced 

data. Data mining and knowledge discovery, 28, 92-122. 

Mienye, I. D., & Sun, Y. (2022). A survey of ensemble learning: Concepts, algorithms, 

applications, and prospects. IEEE Access, 10, 99129-99149.  

Nakas, C., Bantis, L., & Gatsonis, C. (2023). ROC Analysis for Classification and Prediction in 

Practice. CRC Press. 

National Center for Education Statistics. (2017). The condition of education 2017 (NCES 2017-

017). U.S. Department of Education, Institute of Education Sciences. 

National Center for Education Statistics. (2022). Common Core Of Data Public 

Elementary/Secondary School Universe Survey. 

National Center for Education Statistics. (2024). High School Graduation Rates. Condition of 

Education. U.S. Department of Education, Institute of Education Sciences. Retrieved 

from https://nces.ed.gov/programs/coe/indicator/coi.Nembrini, S., König, I. R., & Wright, M. 

N. (2018). The revival of the Gini importance?. Bioinformatics, 34(21), 3711-3718.  

Neild, R. C., Stoner-Eby, S., & Furstenberg, F. F. (2008). Connecting entrance and departure: 

The transition to ninth grade and high school dropout. Education and Urban Society, 40, 

543–569. 

Neild, R. C. (2009). Falling off track during the transition to high school: What we know and 

what can be done. The Future of Children, 53-76. 

Nomi, T., & Allensworth, E. M. (2013). Sorting and supporting: Why double-dose algebra led to 

better test scores but more course failures. American Educational Research Journal, 50(4), 

756-788. 

Nomi, T., Raudenbush, S. W., & Smith, J. J. (2021). Effects of double-dose algebra on college 

persistence and degree attainment. Proceedings of the National Academy of 

Sciences, 118(27), e2019030118. 

https://nces.ed.gov/programs/coe/indicator/coi


 

278 

 

Norbury, H., Wong, M., Wan, Y., Reese, K., Dhillon, S., & Gerdeman, R. D. (2012). Using the 

Freshman On-Track Indicator to Predict Graduation in Two Urban Districts in the Midwest 

Region. Issues & Answers. REL 2012-No. 134. Regional Educational Laboratory Midwest. 

North Carolina General Assembly. (n.d.). Chapter 115C, Article 7: The North Carolina School 

Improvement and Accountability Act. 

https://www.ncleg.gov/EnactedLegislation/Statutes/PDF/ByArticle/Chapter_115c/Article_7.

pdf 

Nussberger, A. M., Luo, L., Celis, L. E., & Crockett, M. J. (2022). Public attitudes value 

interpretability but prioritize accuracy in Artificial Intelligence. Nature 

communications, 13(1), 5821. 

Ogresta, J., Rezo, I., Kožljan, P., Paré, M. H., & Ajduković, M. (2021). Why do we drop out? 

Typology of dropping out of high school. Youth & society, 53(6), 934-954. 

Okoye, K., & Hosseini, S. (2024). Mann–Whitney U Test and Kruskal–Wallis H Test Statistics 

in R. In R programming: Statistical data analysis in research (pp. 225-246). Singapore: 

Springer Nature Singapore. 

Paquette, L., Ocumpaugh, J., Li, Z., Andres, J.M.A.L., Baker, R.S. (2020) Who's Learning? 

Using Demographics in EDM Research. Journal of Educational Data Mining, 12 (3), 1-30. 

Parsons, E., Koedel, C., & Tan, L. (2019). Accounting For Student Disadvantage In Value-

Added Models. Journal Of Educational And Behavioral Statistics, 44 (2), 144–179.  

Perdomo, J. C., Britton, T., Hardt, M., & Abebe, R. (2023). Difficult lessons on social prediction 

from Wisconsin Public Schools. arXiv preprint arXiv:2304.06205. 

Pérez Fernández, S., Martínez Camblor, P., Filzmoser, P., & Corral Blanco, N. O. (2018). 

nsROC: an R package for non-standard ROC curve analysis. The R Journal, 10 (2). 

Peters, N. R. (2021). The Golem in the Machine: FERPA, Dirty Data, and Digital Distortion in 

the Education Record. Wash. & Lee L. Rev., 78, 1991. 

Polikar, R. (2012). Ensemble learning. Ensemble machine learning: Methods and 

applications. Cham: Springer.  

https://www.ncleg.gov/EnactedLegislation/Statutes/PDF/ByArticle/Chapter_115c/Article_7.pdf
https://www.ncleg.gov/EnactedLegislation/Statutes/PDF/ByArticle/Chapter_115c/Article_7.pdf


 

279 

 

Purcell, Z. A., Dong, M., Nussberger, A. M., Köbis, N., & Jakesch, M. (2024). People have 

different expectations for their own versus others' use of AI‐mediated communication 

tools. British Journal of Psychology. 

Reardon, S. F., & Bischoff, K. (2011). Income Inequality And Income Segregation. American 

Journal Of Sociology, 116 (4), 1092–1153.  

Rickles, J., Heppen, J. B., Allensworth, E., Sorensen, N., & Walters, K. (2018). Online credit 

recovery and the path to on-time high school graduation. Educational Researcher, 47(8), 

481-491. 

Rumberger, R. W., & Lim, S. A. (2008). Why students drop out of school: A review of 25 years 

of research. 

Rumberger, R. W. (2011). Dropping out: Why students drop out of high school and what can be 

done about it. 

Rumberger, R. W., & Rotermund, S. (2012). The relationship between engagement and high 

school dropout. In Handbook of research on student engagement (pp. 491-513). Boston, MA: 

Springer US. 

Rumberger, R. W., Addis, H., Allensworth, E., Balfanz, R., Bruch, J., Dillon, E., ... & Tuttle, C. 

(2017). Preventing Dropout in Secondary Schools. Educator's Practice Guide. What Works 

Clearinghouse. NCEE 2017-4028. What Works Clearinghouse. 

Rumberger, R. W. (2020). The economics of high school dropouts. The economics of education, 

149-158. 

Sansone, D. (2019). Beyond Early Warning Indicators: High School Dropout And Machine 

Learning. Oxford Bulletin Of Economics And Statistics, 81 (2), 456–485.   

Sara, N. B., Halland, R., Igel, C., & Alstrup, S. (2015). High-School Dropout Prediction Using 

Machine Learning: A Danish Large-scale Study. In ESANN (Vol. 2015, p. 23rd). 

Sara, N. B., Halland, R., Igel, C., & Alstrup, S. (2015). High-School Dropout Prediction Using 

Machine Learning: A Danish Large-scale Study. In ESANN (Vol. 2015, p. 23rd). 



 

280 

 

Schober, P., & Vetter, T. R. (2018). Survival analysis and interpretation of time-to-event data: 

the tortoise and the hare. Anesthesia & Analgesia, 127(3), 792-798. 

Seeskin, A., Massion, T., & Usher, A. (2022). Elementary On-Track: Elementary School 

Students' Grades, Attendance, and Future Outcomes. Research Report. University of Chicago 

Consortium on School Research. 

Sha, L., Rakovic, M., Whitelock-Wainwright, A., Carroll, D., Yew, V. M., Gasevic, D., & Chen, 

G. (2021). Assessing algorithmic fairness in automatic classifiers of educational forum posts. 

In Artificial Intelligence in Education: 22nd International Conference, AIED 2021, Utrecht, 

The Netherlands, June 14–18, 2021, Proceedings, Part I 22 (pp. 381-394). Springer 

International Publishing. 

Sha, L., Raković, M., Das, A., Gašević, D., & Chen, G. (2022). Leveraging class balancing 

techniques to alleviate algorithmic bias for predictive tasks in education. IEEE Transactions 

on Learning Technologies, 15(4), 481-492. 

Sha, L., Gašević, D., & Chen, G. (2023). Lessons from debiasing data for fair and accurate 

predictive modeling in education. Expert Systems with Applications, 228, 120323. 

Shapley, L. S. (1953). A value for n‐person games. Contribution to the Theory of Games, 2. 

Silver, D., Saunders, M., & Zarate, E. (2008). What factors predict high school graduation in the 

Los Angeles Unified School District California Dropout Research Project. Santa Barbara, 

CA: University of California Santa Barbara.  

Smith, H. (2020). Algorithmic bias: should students pay the price? AI & SOCIETY, 35 (4), 

1077– 1078. 

Siriseriwan, W. (2024) smotefamily: A Collection of Oversampling Techniques for Class 

Imbalance Problem Based on SMOTE. 2019. R package version 1.4.1 

Siriseriwan, W. (2019). A collection of oversampling techniques for class imbalance problem 

based on SMOTE. 



 

281 

 

Snyder, T. (2022). With so many kids struggling in school, experts call for revamping early 

warning systems. Education Week. https://www.edweek.org/leadership/with-so-many-kids-

struggling-in-school-experts-call-for-revamping-early-warning-systems/2022/05  

Sorensen, L. C. (2019). “Big Data” In Educational Administration: An Application For 

Predicting School Dropout Risk. Educational Administration Quarterly, 55 (3), 404–446.  

Spooner, A., Chen, E., Sowmya, A., Sachdev, P., Kochan, N. A., Trollor, J., & Brodaty, H. 

(2020). A comparison of machine learning methods for survival analysis of high-dimensional 

clinical data for dementia prediction. Scientific reports, 10(1), 20410. 

Srujana, B., Verma, D., & Naqvi, S. (2024). Machine learning vs. survival analysis models: a 

study on right censored heart failure data. Communications in Statistics-Simulation and 

Computation, 53(4), 1899-1916. 

Streiner, D. L., & Cairney, J. (2007). What's under the ROC? An introduction to receiver 

operating characteristics curves. The Canadian Journal of Psychiatry, 52(2), 121-128. 

Štrumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications 

using game theory. The Journal of Machine Learning Research, 11, 1-18. 

Stuit, D., O'Cummings, M., Norbury, H., Heppen, J., Dhillon, S., Lindsay, J., & Zhu, B. (2016). 

Identifying Early Warning Indicators in Three Ohio School Districts. REL 2016-

118. Regional Educational Laboratory Midwest. 

Su, M., Olson, L. A., Jarratt, D. C., Varma, S., Konstan, J. A., Keller, R. J., & Chen, B. (2022, 

June). Re-envisioning a K-12 Early Warning System with School Climate Factors. 

In Proceedings of the Ninth ACM Conference on Learning@ Scale (pp. 405-408). 

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-

1293. 

Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Better decisions through science. Scientific 

American, 283(4), 82-87. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society Series B: Statistical Methodology, 58(1), 267-288. 

https://www.edweek.org/leadership/with-so-many-kids-struggling-in-school-experts-call-for-revamping-early-warning-systems/2022/05
https://www.edweek.org/leadership/with-so-many-kids-struggling-in-school-experts-call-for-revamping-early-warning-systems/2022/05


 

282 

 

Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data mining, 

inference, and prediction. Springer. 

Tomek, I. (1976) Two Modifications of CNN. IEEE Transactions on Systems Man and 

Communications, 6, 769-772. 

Valles-Coral, M. A., Salazar-Ramírez, L., Injante, R., Hernandez-Torres, E. A., Juárez-Díaz, J., 

Navarro-Cabrera, J. R., ... & Vidaurre-Rojas, P. (2022). Density-Based Unsupervised 

Learning Algorithm to Categorize College Students into Dropout Risk Levels. Data, 7(11), 

165. 

Vance, A., & Waughn, C. (2020). Student privacy's history of unintended consequences. Seton 

Hall Legis. J., 44, 515. 

Wang, C., Wang, K., Bian, A., Islam, R., Keya, K. N., Foulds, J., & Pan, S. (2022). Do Humans 

Prefer Debiased AI Algorithms? A Case Study in Career Recommendation. In 27th 

International Conference on Intelligent User Interfaces (pp. 134–147).  

Weissman, A. (2022). Friend Or Foe? The Role Of Machine Learning In Education Policy 

Research [Doctoral Dissertation]. 

Wu, T., & Weiland, C. (2024). Leveraging Modern Machine Learning to Improve Early Warning 

Systems and Reduce Chronic Absenteeism in Early Childhood. EdWorkingPaper No. 24-

1081. Annenberg Institute for School Reform at Brown University. 

Yu, R., Li, Q., Fischer, C., Doroudi, S., & Xu, D. (2020). Towards Accurate and Fair Prediction 

of Col lege Success: Evaluating Different Sources of Student Data. Proceedings of The 13th 

International Conference on Educational Data Mining (EDM 2020), 292–301. 

Zaff, J. F., Donlan, A., Gunning, A., Anderson, S. E., Mcdermott, E., & Sedaca, M. (2017). 

Factors That Promote High School Graduation: A Review Of The Literature. Educational 

Psychology Review, 29, 447–476. 

Zhou, Z., & Hooker, G. (2021). Unbiased measurement of feature importance in tree-based 

methods. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2), 1-21. 

 


